www.xrrennepapers.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\bf @}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	43

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	43

(i)	$DF = P \div 18$	B1		
	$[P \div 18 - 800 = 1400 \times 0.5]$	M1		For using DF – $R = ma$
	P = 27000	A1	3	
(ii)	[1080 - 800 = 1400a]	M1		For using DF = $P \div 25$ and DF – $R = ma$
	Acceleration is 0.2ms^{-2}	A1	2	
		M1		For applying Newton's 2nd law to P or to Q
	$0.65 \times 10 \times (63/65) - T = 0.65a$ or $T - 0.65 \times 10 \times (16/65) = 0.65a$	A1		
	$T - 0.65 \times 10 \times (16/65) = 0.65a$ or $0.65 \times 10 \times (63/65) - T = 0.65a$ or $0.65 \times 10 \times (63 - 16)/65 = 2 \times 0.65a$	B1		
	$[T-1.6 = 6.3 - T]$ or $[T=6.3 - 0.65 \times (47/13)]$ or $[T=1.6 + 0.65 \times (47/13)]$	M1		For eliminating <i>a</i>
	Tension is 3.95 N	A1	5	
(i)	$[W\cos\alpha + 7 \times 0.6 = 8]$	M1		For resolving forces acting at O vertically
	$W\cos\alpha = 3.8$ (cwo)	A1		AG
	$W\sin\alpha = 5.6$	B1	3	
(ii)		M1		For using $W^2 = (W \sin \alpha)^2 + (W \cos \alpha)^2$ or $\tan \alpha = (W \sin \alpha \div W \cos \alpha)$
	$W = 6.77 \text{ or } \alpha = 55.8$	A1		
	$\alpha = 55.8 \text{ or } W = 6.77$	B1	3	
(i)	$v(8) = 0.25 \times 8 = 2$	B1		
	$2 = -6.4 + 19.2 - k \implies k = 10.8$	B1√	2	ft (12.8 – v)
(ii)	$[dv/dt = -0.2t + 2.4 (= 0 \text{ when } t = 12)$ $v_{\text{max}} = -0.1 \times 144 + 2.4 \times 12 - 10.8]$	M1		For finding t when $dv/dt = 0$ and substituting into $v(t)$
	Maximum speed is 3.6 ms ⁻¹	A1√	2	ft $(14.4 - \text{incorrect } k)$
	(ii) (ii)	(ii) $[1080 - 800 = 1400a]$ Acceleration is $0.2 \mathrm{ms}^{-2}$ $0.65 \times 10 \times (63/65) - T = 0.65a \mathrm{or}$ $T - 0.65 \times 10 \times (16/65) = 0.65a \mathrm{or}$ $0.65 \times 10 \times (63/65) - T = 0.65a \mathrm{or}$ $0.65 \times 10 \times (63/65) - T = 0.65a \mathrm{or}$ $0.65 \times 10 \times (63/65) - T = 0.65a \mathrm{or}$ $0.65 \times 10 \times (63 - 16)/65 = 2 \times 0.65a$ $[T - 1.6 = 6.3 - T] \mathrm{or}$ $[T = 6.3 - 0.65 \times (47/13)] \mathrm{or}$ $[T = 1.6 + 0.65 \times (47/13)] \mathrm{or}$	[$P \div 18 - 800 = 1400 \times 0.5$] M1 $P = 27000$ A1 (ii) [$1080 - 800 = 1400a$] M1 Acceleration is $0.2 \mathrm{ms}^{-2}$ A1 M1 $0.65 \times 10 \times (63/65) - T = 0.65a \mathrm{or}$ A1 $T - 0.65 \times 10 \times (16/65) = 0.65a \mathrm{or}$ A1 $T - 0.65 \times 10 \times (16/65) = 0.65a \mathrm{or}$ B1 $0.65 \times 10 \times (63/65) - T = 0.65a \mathrm{or}$ 0.65 × 10 × (63 - 16)/65 = 2 × 0.65a [$T - 1.6 = 6.3 - T$] or [$T = 1.6 + 0.65 \times (47/13)$] or [$T = 1.6 + 0.65 \times (47/13)$] M1 Tension is $3.95 \mathrm{N}$ A1 (i) [$W \cos \alpha + 7 \times 0.6 = 8$] M1 $W \cos \alpha = 3.8 \mathrm{(cwo)}$ A1 $W \sin \alpha = 5.6$ B1 (ii) M1 $W = 6.77 \mathrm{or} \alpha = 55.8$ A1 $\alpha = 55.8 \mathrm{or} W = 6.77$ B1 (ii) $v(8) = 0.25 \times 8 = 2$ B1 $2 = -6.4 + 19.2 - k \rightarrow k = 10.8$ B1 $^{\wedge}$	[$P+18-800=1400\times0.5$] M1 $P=27000$ A1 3 (ii) [$1080-800=1400a$] M1 Acceleration is $0.2\mathrm{ms}^{-2}$ A1 2 M1 $0.65\times10\times(63/65)-T=0.65a$ or $T-0.65\times10\times(16/65)=0.65a$ Or $0.65\times10\times(63/65)-T=0.65a$ or $0.65\times10\times(63/65)-T=0.65a$ or $0.65\times10\times(63/65)-T=0.65a$ or $0.65\times10\times(63/65)-T=0.65a$ or $0.65\times10\times(63/65)-T=0.65a$ or $0.65\times10\times(63/65)-T=0.65a$ or $0.65\times10\times(63-16)/65=2\times0.65a$ [$T-1.6=6.3-T$] or $[T=6.3-0.65\times(47/13)]$ or $[T=1.6+0.65\times(47/13)]$ M1 Tension is $3.95\mathrm{N}$ A1 5 (i) [$W\cos\alpha+7\times0.6=8$] M1 $W\cos\alpha=3.8$ (cwo) A1 $W\sin\alpha=5.6$ B1 3 (ii) M1 $W=6.77\mathrm{or}\alpha=55.8$ A1 $\alpha=55.8\mathrm{or}W=6.77$ B1 3 (i) $\nu(8)=0.25\times8=2$ B1 $2=-6.4+19.2-k \Rightarrow k=10.8$ B1 $\sqrt[3]{2}$ 2 (ii) [$\mathrm{d}v/\mathrm{d}t=-0.2t+2.4$ (= 0 when $t=12$) $v_{\mathrm{max}}=-0.1\times144+2.4\times12-10.8$] M1

Page 5	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	43

(iii)	Displacement $s_1 = \frac{1}{2} \ 0.25 \times 8^2 (= 8)$	B1		
	[Displacement $s_2 = [-0.1t^3/3 + 1.2t^2 - 10.8t]_8^{18}$	M1		For using displacement
	$\begin{bmatrix} s_2 - [-0.1t/3 + 1.2t - 10.8t]_8 \\ & (=26.7) \end{bmatrix}$			$s_2 = \frac{1}{8} (-0.1t^2 + 2.4t - 10.8) dt$
	Displacement is 34.7 m	A1	3	
5	$[P - 8g\sin 5^{\circ} - F = 8a]$	M1		For using Newton's 2 nd law (either case)
	$7X - 8g\sin 5^{\circ} - F = 8 \times 0.15$ and $8X - 8g\sin 5^{\circ} - F = 8 \times 1.15$	A1		
	X=8	A1		
		M1		For obtaining a numerical expression for F
	$F = 56 - 8g\sin 5^{\circ} - 8 \times 0.15 \text{ or}$ $F = 64 - 8g\sin 5^{\circ} - 8 \times 1.15 \text{ or}$ $F = 56 \times 1.15 - 64 \times 0.15 - 8g\sin 5^{\circ} \text{ or}$ $F = 47.8(275)$	A1√		ft X either from error for one term in X/F equation or from error in solution of correct X/F equations
	$R = 8g\cos 5^{\circ}$ (= 79.695)	B1		
	$[\mu = 47.8 \div 79.7]$	M1		For using $\mu = \frac{F}{R}$
	Coefficient is 0.600 (accept 0.6)	A1	8	
6 (i)		M1		For using the gradient property for acceleration
	Acceleration is 4 ms ⁻²	A1		
		M1		For applying Newton's 2^{nd} law to both particles or using the formula $(M+m)a = (M-m)g$ and for using $m+M=1$
	For $T - mg = 4m$ and $(1 - m)g - T = 4(1 - m)$ or $4 = (1 - m - m)g$	A1		
	P has mass 0.3 kg and Q has mass 0.7 kg	A1	5	

Page 6	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	43

(ii)	For using the area property of the graph or $h = \frac{1}{2} at^2$ to obtain $h = 2$	B1	1		
(iii)	Distance travelled upwards by $P = \frac{1}{2} 1.4 \times 4$	B1			
	Height is 4.8 m	B1	2		
7 (i)	$4^2 = 0^2 + 2a \times 12.5 \implies a = 0.64$	B1			
	$[35 \times 0.96 - 3g \times 0.6 - F = 3 \times 0.64]$	M1		For using Newton's 2^{nd} law to find F	
	F = 13.68	A1			
	WD against $F = 13.68 \times 12.5 = 171 \text{ J}$	B1	4		
(ii)	$R_{\text{from O to A}} = 3g \times 0.8 - 35 \times 0.28$	В1			
	$[\mu = 13.68 \div 14.2 (= 0.96338)]$	M1		For using $\mu = F \div R$	
	Coefficient is 0.963 (accept 0.96)	A1	3		
(iii)	$[-3g \times 0.6 - 0.96338 \times (3g \times 0.8) = 3a]$	M1		For applying Newton's 2^{nd} law to the block to find a	
	Acceleration is –13.7 ms ⁻²	A1			
	[0 = 16 + 2(-13.7)s]	M1		For using $v^2 = u^2 + 2as$ to find s	
	Distance travelled is 0.584 m	A1	4		
	Alternati	ive for p	art (i)		
(i)	Gain in KE = $\frac{1}{2} 3 \times 4^2 (= 24 \text{ J})$	B1			
	Gain in PE = $3g \times 12.5 \times 0.6$ (= 225 J)	B1			
	[WD = $35 \times 12.5 \times 0.96 - \frac{1}{2} \cdot 3 \times 4^2 - 3g \times 12.5 \times 0.6$]	M1		For using WD against F = WD by applied force – KE gain – PE gain	
	WD against F is 171 J	A1	4		
	Alternative for part (iii)				
	WD against $F = 0.96(338) \times 3g \times 0.8s$	B1			
		M1		For using KE loss = PE gain + WD against friction	
	$\frac{1}{2} 3 \times 4^2 = 3gs(0.6) + 0.96(338) \times 3g \times 0.8s$	A1			
	Distance travelled is 0.584 m	A1	4		