CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

mmn. tiremen abers. com

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014		31

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	uge 4	Camb		709	31	<u> </u>
1			ogarithm of a power		M1	
		in a correct	linear equation in any form, e.g. $x = (x-2) \ln 3$ = 22.281		A1 A1	[3]
	Oota	im answer x	- 22,201		AI	[J]
2	(i)	State or imp	oly ordinates 2, 1.1547, 1, 1.1547		B1	
		Use correct	formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates		M1	
		Obtain answ			A1	[3]
	(ii)	Make recog	enisable sketch of $y = \csc x$ for the given interval		В1	
		Justify a sta	tement that the estimate will be an overestimate		B1	[2]
3	Subs	stitute $x = -$	$\frac{1}{3}$, equate result to zero or divide by $3x + 1$ and equate the remainder to	zero		
	and	obtain a corr	rect equation, e.g. $-\frac{1}{27}a + \frac{1}{9}b - \frac{1}{3} + 3 = 0$		B1	
			and equate result to 21 or divide by $x - 2$ and equate constant remainder	to 21	M1	
			equation, e.g. $8a + 4b + 5 = 21$		A1	
		e for a or for $a = 12$ and			M1 A1	[5]
4	(i)	Use chain ru	ule correctly at least once		M1	
		Obtain eithe	$\operatorname{er} \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3\sin t}{\cos^4 t} \text{ or } \frac{\mathrm{d}y}{\mathrm{d}t} = 3\tan^2 t \sec^2 t \text{ , or equivalent}$		A1	
		Use $\frac{dy}{dy} = \frac{dy}{dy}$	$\frac{y}{\dot{z}} = \frac{dx}{dx}$		M1	
		dx = dx	t - dt			[4]
		Obtain the g	given answer		A1	[4]
			ect equation for the tangent in any form		B1	
		Use Pythage Obtain the s	oras given answer		M1 A1	[3]
		2 Juni 111 g	5- 1-1			[e]
5	(i)	Substitute <i>z</i>	$= 1 + i$ and obtain $w = \frac{1 + 2i}{1 + i}$		B1	
		EITHER:	l+i Multiply numerator and denominator by the conjugate of the denominator	ator		
		LITTILIA.	or equivalent	,	M1	
			Simplify numerator to $3 + i$ or denominator to 2		A1	
			Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent		A1	
		OR:	Obtain two equations in x and y , and solve for x or for y		M1	
			Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent		A1	
			Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent		A1	[4]
			2 2			

Mark Scheme

Syllabus

Paper

Page 4

Page 5		Mark Scheme Syll	abus	ibus Papei	
	Cambridge International A Level – October/November 2014 9709				
(ii)	(ii) EITHER: Substitute $w = z$ and obtain a 3-term quadratic equation in z, e.g. $iz^2 + z - i = 0$				
	meth	e a 3-term quadratic for z or substitute $z = x + iy$ and use a correct and to solve for x and y stitute $w = x + iy$ and obtain two correct equations in x and y by e		M1	
	real	and imaginary parts e for x and y		B1 M1	
		lution in any form, e.g. $z = \frac{-1 \pm \sqrt{3} i}{2i}$		A1	
	Obtain final answer	$x - \frac{\sqrt{3}}{2} + \frac{1}{2}i$		A1	[4]
(i)	Integrate and reach	$bx\ln 2x - c \int x \cdot \frac{1}{x} dx$, or equivalent		M1*	
	Obtain $x \ln 2x - \int x$.	$\frac{1}{x}$ dx, or equivalent		A1	
	Substitute limits co Obtain a correct eq	2x - x, or equivalent rrectly and equate to 1, having integrated twice uation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$	M1(d	A1	
(ii)		rmula correctly at least once		A1 M1	[6
	Obtain final answer Show sufficient iter change in the interv	rations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign	1	A1 A1	[3
()	Separate variables of Obtain term $\ln R$ Obtain $\ln x - 0.57x$	correctly and attempt to integrate at least one side		B1 B1 B1	
	Evaluate a constant $a \ln R$ and $b \ln x$	or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms of	the forn	n M1	
	Obtain correct solu Obtain a correct ex	tion in any form pression for <i>R</i> , e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or		A1	
	$R = 33.6xe^{(0.285 - 1)}$	0.57x)		A1	[6
(ii)	Equate $\frac{dR}{dx}$ to zero	and solve for x		M1	
	State or imply $x = 0$ Obtain $R = 28.8$ (al	0.57 ⁻¹ , or equivalent, e.g. 1.75 low 28.9)		A1 A1	[3
	Use correct double	nula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ pression in terms of $\sin \theta$ in any form	ı	M1 M1 A1	

[SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and $\cos2\theta$,

then M1A1 for expressing in terms of $\sin\theta$ and $\sin3\theta$ only, or in terms

Page 6	Mark Scheme		Paper
	Cambridge International A Level – October/November 2014		31

(ii) Substitute for x and obtain the given answer

B1 [1]

[4]

(iii) Carry out a correct method to find a value of x

M1

Obtain answers 0.322, 0.799, -1.12

A1 + A1 + A1

[Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

9 (i) State or imply the form $\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$

Use a correct method to determine a constant

M1

Obtain one of A = 2, B = -1, C = 3

Obtain a second value A1

Obtain a third value A1 [5]

[The alternative form $\frac{A}{1-x} + \frac{Dx + E}{(2-x)^2}$, where A = 2, D = 1, E = 1 is marked

B1M1A1A1A1 as above.]

(ii) Use correct method to find the first two terms of the expansion

of
$$(1-x)^{-1}$$
, $(2-x)^{-1}$, $(2-x)^{-2}$, $(1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$

M1

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction

 $A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$

Obtain final answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent

A1 **[5]**

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for M1. The \checkmark is on A,B,C.]

[For the A,D,E form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then, if $D \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

10 (i) EITHER: Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point P on l with parameter λ ,

e.g.
$$i - 17j + 4k + \lambda(-2i + j - 2k)$$

B1

Calculate scalar product of \overrightarrow{AP} and a direction vector for l and equate to zero M1 Solve and obtain $\lambda = 3$ A1

Carry out a complete method for finding the length of *AP*Obtain the given answer 15 correctly

A1

OR1: Calling (4, -9, 9) B, state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}$ B1

Calling (4, -9, 9) B, state BA (or AB) in component form, e.g. $-1+1/\mathbf{j}-4\mathbf{k}$ B

Calculate vector product of BA and a direction vector for l, e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$

e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ M1 Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ A1

Divide the modulus of the product by that of the direction vector

Obtain the given answer correctly

A1

OR2: State \overrightarrow{BA} (or \overrightarrow{AB}) in component form

Use a scalar product to find the projection of BA (or AB) on l M1

Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}}$

Use Pythagoras to find the perpendicular M1

Page 7	Mark So	cheme	Syllabus	Pape	r
Ī	Cambridge International A Lev	vel – October/November 2014	9709	31	
	Obtain the airean answers are			A 1	
_	Obtain the given answer con			A1	
ϵ	PR3: State $PR3$: State $PR3$			B1	
	Use a scalar product to find			M1	
	Obtain correct answer in an	y form, e.g. $\frac{27}{\sqrt{9.\sqrt{306}}}$		A1	
	Use trig. to find the perpend	licular		M1	
	Obtain the given answer con	rectly		A1	
\mathcal{C}	PR4: State \overrightarrow{BA} (or \overrightarrow{AB}) in comp	onent form		B1	
	Find a second point C on l a	and use the cosine rule in triangle ABC	to find the		
		or use a vector product to find the area	of <i>ABC</i>	M1	
	Obtain correct answer in an			A1	
	Use trig. or area formula to			M1	
	Obtain the given answer con	· ·		A1	
C		or a point P on l with parameter λ in an	ny form	B1	
		ess AP^2 (or AP) in terms of λ		M1	
	Obtain a correct expression	-			
	e.g. $(1-2\lambda)^2 + (-17+\lambda)^2 +$	$(4-2\lambda)^2$		A1	
	·	ing its minimum (using calculus, algeb	ora		
	or Pythagoras)			M1	
	Obtain the given answer con	rectly		A1	[5]
(ii) EITHER: Substitute coordinates of a general point of l in equation of plane a					
	-	quate the coefficient of λ to zero, obtain		e a st	
	equation in a and b	27 1 1 0	ľ	M1*	
	Obtain a second correct equation,	e.g. $4a - 9b - 27 + 1 - 0$ quation, e.g. $-2a + b + 6 = 0$		A1 A1	
	Solve for a or for b	quation, e.g. $-2u+b+0=0$	M1(de		
	Obtain $a = 2$ and $b = -2$		1711(4)	A1	
\mathcal{C}		a point of l and obtain a correct equation	on,		
	e.g. $4a - 9b = 26$,	B1	
	EITHER: Find a second	point on l and obtain an equation in a	and b	M1*	
	Obtain a corre			A1	
		r product of a direction vector for <i>l</i> and		£ 1 ×	
		plane and equate to zero	N	M1*	
	Solve for <i>a</i> or for <i>b</i>	et equation, e.g. $-2a + b + 6 = 0$	M1(de	A1	
	Obtain $a = 2$ and $b = -2$		1711 (46	A1	[5]
	00001110 - 201100 - 2			111	