MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

MMM. Hiremepapers.com

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

1	EITHER	State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$ or corresponding quadratic equation, or pair of linear equations $3(x-1) = \pm (2x+1)$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x = \frac{2}{5}$ and $x = 4$	B1 M1 A1	
		State answer $5 < x < 4$	A1	
	<i>OR</i> by	Obtain critical value $x = \frac{2}{5}$ or $x = 4$ from a graphical method, or by inspection, or		
	Uy	solving a linear equation or inequality	B1	
		Obtain critical values $x = \frac{2}{5}$ and $x = 4$	B2	
		State answer $\frac{2}{5} < x < 4$ [Do not condone \leq for \leq .]	B1	[4]
2	EITHER	Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5^{x-1} $\frac{5}{1-\frac{1}{5}}$	M1	
		Obtain 5^x or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^x =$	A1	
		Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a \ge 0$ Obtain answer $x = 1.14$	M1 A1	
	OR	Use an appropriate iterative formula, e.g. $x_{n+1} = $, correctly, at least on Obtain answer 1.14 Show sufficient iterations to at least 3 d.p. to justify 1.14 to 2 d.p., or show there is a sign change in the interval (1.135, 1.145) Show there is no other root [For the solution $x = 1.14$ with no relevant working give B1, and a further B1 if 1.14 is shown to be the only solution.]	ceM1 A1 A1 A1	[4]
3	Attempt u	se of sin $(A + B)$ and cos $(A - B)$ formulate to obtain an equation in cos θ and sin θ	M1	

3	Attempt use of sin $(A + B)$ and cos $(A - B)$ formulate to obtain an equation in cos θ and sin θ	MI
	Obtain a correct equation in any form	A1
	Use trig. formula to obtain an equation in tan θ (or $\cos \theta$, $\sin \theta$ or $\cot \theta$)	M1

Obtain tan $\theta =$, or equivalent (or find cost θ , sin θ or cot θ)	A1	
Obtain answer $\theta = 105.9^\circ$	^o , and no others in the given interval	A1	[5]
[Ignore answers outside t	he given material]		

	Page 5		Mark Scheme	Syllabus	Paper	r
			GCE AS/A LEVEL – October/November 2012	9709	32	
4	(i)		prrect unsimplified terms in x and x^3 befficients and solve for a 1		B1 + B1 M1	
		Obtain fi	nal answer $a = \sqrt{2}$, or exact equivalent		A1	[4]
	(ii)	Obtain 1	ect method and value of <i>a</i> to find the first two terms of the exp $-\sqrt{2x}$, or equivalent $\frac{3}{x^2}$	pansion $(1 + ax)^{-1}$	A1 •	
			rm 2^{4} c coefficients, e.g. <i>a</i> , are not sufficient for the first B marks] s solely on the value of <i>a</i> .]		A1 •	[3]

	Pa	ge 6	Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – October/November 2012	9709	32	
5	(i)		ct quotient or chain rule e given answer correctly having shown sufficient working		M1 A1	[2]
	(ii)		d method, e.g. multiply numerator and denominator by sec x Pythagoras to justify the given identity	$+ \tan x$, and a	B1	[1]
	(iii)		, expand (sec $x + \tan x$) ² and use Pythagoras once ven identity		M1 A1	[2]
	(iv)	Use corre	egral $2 \tan x - x + 2 \sec x$ et limits correctly in an expression of the form $a \tan x + bx + bx + bx = 0$	$c \sec x$, or	B1	
			t, where $abc \neq 0$ e given answer correctly		M1 A1	[3]
6	Obt Stat	ain term ln	and use a relevant method to find <i>A</i> or <i>B</i> 1		B1 B1 M1	
	Inte [If t	grate and o he integral 1	$\frac{1}{2} \ln (1-y) + \frac{1}{2} \ln (1+y), \text{ or equivalent}$ is directly stated as $k_1 \ln \text{ or } k_2 \ln \text{ give M1}, \text{ and then A2 for }$ 1		A1 √	
	Eva and [Th	$c \ln (1 + y)$	2] stant, or use limits $x = 2$, $y = 0$ in a solution containing terms), where $abc \neq 0$ is not available if the integral of $1/(1 - y^2)$ is initially taken to		M1	
			in any correct form, e.g. $\frac{1}{2} \ln = \ln x - \ln 2$ obtain $y =$, or equivalent, free of logarithms		A1 A1	[8]
-			State or imply $\frac{1}{x} + \frac{1}{y} \frac{dy}{dx}$ as derivative of ln xy, or equivalent		D1	
7	(i)	EITHER:	State or imply x^{2} y ux as derivative of in xy, or equivalent State or imply $3y^{2} \frac{dy}{dx}$ as derivative of y^{3} , or equivalent	nt	B1 B1	
			Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$ Obtain the given answer		M1 A1	
		OR	Obtain $xy = \exp((1 + y^3))$ and state or imply $y + x \frac{dy}{dx}$ as derived	ative of <i>xy</i>	B1	
			State or imply $3y^2 \frac{dy}{dx} \exp(1+y^3)$ as derivative of $(1+y^3)$ dy		B1	
			Equate derivatives and solve for $\frac{dy}{dx}$ Obtain the given answer [The M1 is dependent on at least one of the B marks being	earned]	M1 A1	[4]
	(ii)	Obtain y = Substitute	nominator to zero and solve for <i>y</i> = 0.693 only found value in the equation and solve for <i>x</i> = 5.47 only		M1* A1 M1(0 A1	dep*) [4]

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	32

8	(i)	Obtain der Equate der for real <i>x</i>	et product or quotient rule and use chain rule at least once ivative in any correct form rivative to zero and solve an equation with at least two non-zero terms wer $x = \frac{1}{\sqrt{2}}$, or exact equivalent	M1 A1 M1 A1	[4]
	(ii)	State a suit Rearrange 1	table equation, e.g. $\alpha = \sqrt{(("ln" [("4" + "8" ('2]))))}$ to reach "e" '((["2"]) = 4 + 8 α^2	B1 B1	[י]
	(iii)	Use the ite Obtain fina Show suffi	• • • • • • • • • •	B1 M1 A1 A1	[3]
9	(i)	EITHER OR 1 OR 2	Substitute $x = 1 + \sqrt{2}$ i and attempt the expansions of the x^2 and x^4 terms Use $i^2 = -1$ correctly at least once Complete the verification State second root $1 - \sqrt{2}$ i State second root $1 - \sqrt{2}$ i Carry out a complete method for finding a quadratic factor with zeros $1 \pm \sqrt{2}$ i Obtain $x^2 - 2x + 3$, or equivalent Show that the division of $p(x)$ by $x^2 - 2x + 3$ gives zero remainder and complete the verification Substitute $x = 1 + \sqrt{2}$ i and use correct method to express x^2 and x^4 in polar form Obtain x^2 and x^4 in any correct polar form (allow decimals here) Complete an exact verification State second root $1 - \sqrt{2}$ i, or its polar equivalent (allow decimals here)	M1 B1 A1 B1 M1 A1 A1 M1 B1 A1 B1	[4]
	(ii)	Obtain x^2 - Attempt di or equivale Obtain qua Find the ze Obtain roo [The secon equation ir [If part (i)	a complete method for finding a quadratic factor with zeros $1 \pm \sqrt{2}$ i - 2x + 3, or equivalent ivision of $p(x)$ by $x^2 - 2x + 3$ reaching a partial quotient $x^2 + kx$,	-	lep*) [6]

	Pa	ge 8	Mark Scheme S	yllabus	Paper
			GCE AS/A LEVEL – October/November 2012	9709	32
10				C	
10	(i)	EITHER	Use scalar product of relevant vectors, or subtract point equation equations in $a, b, c, a, c, f, h = 2a = 0$ and $a, b = 2a = 0$	is to form tv	vo M1*
			equations in <i>a</i> , <i>b</i> , <i>c</i> , e.g. $a - 5b - 3c = 0$ and $a - b - 3c = 0$ State two correct equations in <i>a</i> , <i>b</i> , <i>c</i>		A1
			Solve simultaneous equations and find one ratio, e.g. $a : c$, or b	= 0	M1 (dep*)
			Solve simulations and the one ratio, e.g. $a : c$, or b Obtain $a : b : c = 3 : 0 : 1$, or equivalent	- 0	Al
			Substitute a relevant point in $3x + z = d$ and evaluate d		M1 (dep*)
			Obtain equation $3x + z = 13$, or equivalent		A1
		OR 1	Attempt to calculate vector product of relevant vectors,		
			e.g. $(i - 5j - 3k) \times (i - j - 3k)$		M2*
			Obtain 2 correct components of the product		A1
			Obtain correct product, e.g. $12\mathbf{i} + 4\mathbf{k}$		A1
			Substitute a relevant point in $12x + 4z = d$ and evaluate d		M1 (dep*)
			Obtain $3x + z = 13$, or equivalent		A1
		OR 2	Attempt to form 2-parameter equation for the plane with relevant		M2*
			State a correct equation e.g. $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}) + \mu$	$(\mathbf{i} - \mathbf{j} - 3\mathbf{k})$	A1
			State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ		A1
			Eliminate λ and μ		M1 (dep*)
			Obtain equation $3x + z = 13$, or equivalent		A1 [6]
	(!!)		Find \overrightarrow{CP} for a point <i>P</i> on <i>AB</i> with a parameter <i>t</i> , e.g. $2\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$		2L) D1 🗄
	(11)	EITHER			- 3K) BI¥
			<i>Either</i> : Equate scalar product $\overrightarrow{CP}, \overrightarrow{AB}$ to zero and form an equat	ion in <i>t</i>	
			Or 1: Equate derivative for CP^2 (or CP) to zero and form an equ	ation in t	
			Or 2: Use Pythagoras in triangle CPA (or CPB) and form an equ		M1
			Solve and obtain correct value of <i>t</i> , e.g. $t = -2$		A1
			Carry out a complete method for finding the length of CP		M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1
		OR 1	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √
			Using a relevant scalar product find the cosine of <i>CAB</i> (or <i>CBA</i>) 22 33	1	M1
			Obtain cost $CAB = -\sqrt{11}\sqrt{62}$, or cos $CBA = \sqrt{11}\sqrt{117}$, or ea	nuivalant	A1
			Use trig to find the length of the perpendicular $A = VII.VII P$, of each A = VII.VII P, of each $A = VII$.VIII P , of	quivalent	M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1
		OR 2	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √*
			Using a relevant scalar product find the length of the projection	AC (or BC)	
			on AB		M1
			Obtain answer $2\sqrt{11}$ (or), $3\sqrt{11}$ or equivalent		A1
			Use Pythagoras to find the length of the perpendicular		M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		Al
		OR 3	State \overline{AC} (or \overline{BC}) and \overline{AB} in component form		B1 √*
			Calculate their vector product, e.g. $(-2\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}) \times (-\mathbf{i} + \mathbf{j} + 3\mathbf{k})$	x)	M1
			Obtain correct product, e.g. $-2\mathbf{i} + 13\mathbf{j} - 5\mathbf{k}$		A1
			Divide modulus of the product by the modulus of \overline{AB}^{\dagger}		M1
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		Al
		OR 4	State two of \overline{AB} , \overline{BC}) and \overline{AC} in component form		B1 √
			Use cosine formula in triangle <i>ABC</i> to find $\cos A$ or $\cos B$		M1
			$\frac{44}{66}$		1 VI I
			Obtain $\cos A = -2\sqrt{11}\sqrt{62}$, or $\cos B = 2\sqrt{11}\sqrt{117}$		A1
			Use trig to find the length of the perpendicular		M1

Page 9	Mark Scheme	Syllabus	Paper	•
	GCE AS/A LEVEL – October/November 2012	9709	32	
	Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1	[5]

[The f.t is on \overrightarrow{AB}]