CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

MMM. Hiremepapers.com

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4 Mark Scheme		Syllabus	Paper				
		GCE AS/A LEVEL – Octob	LEVEL – October/November 2012			12		
1	$\left(x^2 - \frac{a}{x}\right)^7$ Term in x^5 is This term iso Equated to -2	$_{7}C_{3} \times (x^{2})^{4} \times (-a/x)^{3}$ blated 280 $\rightarrow a = 2.$	B1 M1 A1 [3]	Allow on own or in an expansion. Correct term in x^5 selected. Equated to -280				
2	(i) $f(x) =$ Make $\rightarrow 2($ $\rightarrow 2x$ (ii) domai	$\frac{1}{2}\sqrt{\frac{x+3}{2}} + 1, \text{ for } x \ge -3$ x the subject or interchanges x,y $(x-1)^2 - 3$ $x^2 - 4x - 1$ n of f ⁻¹ is ≥ 1.	M1 M1 A1 [3] B1 [1]	Attempt a Squares b and "÷2". co co. condo	t x as subject an oth sides and de one >1	d removes +1 als with "+3"		
3	(i) $A = 24$ $\rightarrow A =$ (could (ii) $\frac{dA}{dx} =$ = 0 w $\rightarrow A =$	400 - 20(60 - 2x) - x(40 - x) - 30x = $x^2 - 30x + 1200$. I be trapezium - triangle) $2x - 30 \text{ or } (x - 15)^2 + 975$ then $x = 15$ or Min at $x = 15$ = 975.	M1 A1 [2] B1 M1 A1 [3]	Needs atte co answe co - either Sets differ co.	empts at all areas r given r method okay rential to 0 + sol	s ution. co		
4	$y = \frac{x}{k} + k$ (i) $\frac{x^2}{4} = -\frac{1}{2}$ Uses k (calcul) $\rightarrow x = -\frac{1}{2}$ (ii) $y = -\frac{1}{2}$ $\rightarrow x^2$	$4y = x^{2}$ $\frac{x}{k} + k \rightarrow kx^{2} - 4x - 4k^{2} = 0$ $b^{2} - 4ac \rightarrow k = -1$ $lus \frac{1}{k} = \frac{2x}{4} B1$ $\frac{2}{k}, y = \frac{1}{k^{2}} M1 \rightarrow k = -1 \text{ A1})$ $x - 1, 4y = x^{2}$ $+ 4x + 4 = 0$	M1 M1 A1 [3] M1 M1 A1	Eliminate Uses $b^2 -$ co nb a, b Eliminatio Soln of ec	s x or y complete 4ac for a quadr ac must not be f(on of x or y qn. co.	ely. atic = 0 (x)		

	Page 5	Page 5 Mark Scheme			Syllabus	Paper
		GCE AS/A LEVEL – October/November 2012		9709	12	
5	A (1, 3), E	B(5, 11), X(4, 4)				
	(i) Gradie	ent of $AB = 2$				
	Gradie	ant of $BC = -\frac{1}{2}$	B1	со		
	\rightarrow Eq	n of <i>BC</i> is $y-11 = -\frac{1}{2}(x-5)$	M1	For use of	$f m_1 m_2 = -1$	
			A1	co – unsir	nplified is fine	
	(ii) gradie	nt of AC (or AX) is $\frac{1}{3}$	[3]			
	$\rightarrow ean$	of AC is $v-3 = \frac{1}{2}(r-1)$				
	/ eqn	$\int \frac{1}{3} \left(x \right)^{-1} \left(x \right$	B1	co	0.11	
		or $y-4 = \frac{1}{3}(x-4)$	MI	Correct fo	orm of line equat	tion + sim eqns
	Sim ec	putions $\rightarrow C(13,7)$. 1	со	1 0/2	
			AI	answer only $-0/3$ - assumed $AB = BC$.		dAB = BC.
			[3]	(13.7) all	on of table and go	For (ii)
				(1 <i>3</i> ,7) and	Jw the J marks i	.01 (II) .
6	$2\cos x = 3\tan x$	an x				
	(i) Replac	tes tan x by $\sin x \div \cos x$	M1	Uses $t = s$	$\div c$	
	$\rightarrow 2c^2$	$s^2 = 3s \rightarrow 2s^2 + 3s - 2 = 0$	M1 A1	Uses $s^2 +$	$c^2 = 1$. Correct	eqn.
			[3]			_
	(ii) Soln o	f quadratic	M1	Method fo	or quadratic $= 0$	and ÷2
	$\rightarrow y =$	15°		CO Warles mi	the Des Grant hafam	
	$2y \operatorname{can}$	a150 be 180 - 30		$for 00^{\circ} -$	1^{st} answer	$\dot{e} \neq 2$
	$\rightarrow y -$	- 73 .	[4]	101.90 (loses \sqrt{m}	allswei.	in range)
				(10565 + 11		(in range)
7	\rightarrow (1)	\rightarrow $\begin{pmatrix} k \end{pmatrix}$				
	$OA = \left 0 \right $	OB = -k				
	(2)	$\left(2k \right)$				
	(1)	2)				
		$\frac{2}{2} = 10$	M1	Use of $x_1 x_2$	$x_2 + y_1y_2 + z_1z_2$	
	$(\mathbf{I}) [0].$					
	(2)	4)				
	$=\sqrt{5}$	$\sqrt{24}\cos\theta$	M1	Product of	f 2 moduli	
	$\rightarrow \theta =$	= 24.1°	MIAI	All conne	cted correctly. c	0
			[4]			
		$\begin{pmatrix} k-1 \end{pmatrix}$				
		$\kappa = 1$				
	(II) $AB =$	$-\kappa$ allow each cpt \pm	M1	Correct fo	or either AB or B	BA.
		(2k-2)				
	(k-1)	$k^{2} + k^{2} + (2k-2)^{2}$	M1	Sum of 3	squares (doesn't	need $=1$)
	$\rightarrow 6k$	$k^{2} - 10k + 4 - 0$	A1	Correct qu	uadratic	
	$\rightarrow k =$	$= 1 \text{ or } \frac{2}{3}$		со		
	~ K		[4]			

	Page 6 Mark Scheme		Syllabus	Paper		
	GCE AS/A LEVEL – October/November 2012		9709	12		
8	(a) (i) an E - (ii) su	$r = 24, \ ar^3 = 13\frac{1}{2}$ liminates $a \text{ (or } r) \rightarrow r = \frac{3}{4}$ $\Rightarrow a = 32$ um to infinity = $32 \div \frac{1}{4} = 128$	B1 M1 A1 [3] M1A1√ [♣]	Both needed Method of Solution. co Correct formula used. \checkmark on value of <i>r</i>		n value of <i>r</i>
	(b) $a = 3$, $\frac{n}{2}(6 + 2n)$ $\rightarrow n = 2n$	d = 2 (n-1)2) (= 360) $a^{2} + 4n - 720 = 0$ = 18	[2] B1 M1 A1 A1 [4]	Correct value for d Correct S_n used. no need for 360 here. Correct quadratic co		
9	$y = \frac{9}{2x+3}$ (i) $\frac{dy}{dx} = \frac{1}{(0)}$ $\rightarrow m = \frac{1}{2}$ $\rightarrow y = \frac{1}{2}$ (ii) Meets	A(3, 1) B(0, 3) $\frac{-9}{2x+3)^2} \times 2$ $= -\frac{2}{9}$ $-1 = -\frac{2}{9}(x-3)$ the <i>v</i> -axis when $x = 0$, $v = 1\frac{2}{4}$	B1 B1 M1 A1√ [*] [4]	Correct w independe Correct fo For his <i>m</i> (normal –	ithout the $\times 2$. F ent of first part. form of tan - num following use of \rightarrow max 2/4, no ca	or \times 2, erical dy/dx f dy/dx. lculus 0/4)
	(ii) Integra Uses 1	al of $\frac{81}{(2x+3)^2} = \frac{-81}{2x+3} \div 2$ imits 0 to 3 $\rightarrow \frac{-9}{2} - \frac{-81}{6} = 9\pi$	E1 [1] B1 B1 M1 A1 [4]	Sets x to C The $1^2/_3$ a Correct w Use of lin no π – ma	ithout the \div 2. If hits with integral x ³ / ₄ . Use of are	be correct. For $\div 2$, l of y^2 only a - 0/4,

	Page 7	Page 7 Mark Scheme			Syllabus	Paper
		GCE AS/A LEVEL – October/November 2012			9709	12
10	$\frac{\mathrm{d}y}{\mathrm{d}x} = x + \frac{4}{x^2} a$	and $P(4, 8)$				
	(i) $y = -\frac{y}{2}$	$\frac{x}{2} - \frac{4}{x} + (c)$	B1 B1	co.co (ignore $+c$ at this stage)		
	Uses	$(4,8) \to \ c=1$	M1 A1 [4]	Uses the j	point after integr	ation for <i>c</i>
	(ii) $\frac{d^2y}{dx^2}$	$=1-\frac{8}{x^3}$	B1	Со		
	= 0 w	when $x = 2$	B1	Sets to 0 - a conclus	+ solution or ver ion (stationary o	ifies and states r min)
	\rightarrow gra	adient of 3	B1	Allow for	x = 2 into dy/dx	
	d/dx	$(1-\frac{8}{x^3}) = \frac{24}{x^4} \rightarrow +ve \rightarrow Min.$	B1 [4]	Any valid 2nd diff g	l method - 3rd di goes $-0+$, or 1st g	fferential +ve goes >3,3,>3
11	(i) <i>OQ</i> =	x + OC = 20	D1	T T 1	1 1	" 2 0"
			BI	Used som	iewnere – needs	201.
	sin 0.0	$6 = \frac{x}{OC} \rightarrow OC = \frac{x}{\sin 0.6}$	M1	Use of tri	g in 90° triangle	
	$x + -\frac{1}{si}$	$\frac{x}{\ln 0.6} = 20 \rightarrow x = 7.218$	M1 A1 [4]	Soln of linensure the	near equation. (a ere is a correct m	nswer given, hethod)
	(ii) Area = 76.3	$= \frac{1}{2} \cdot 20^2 \times 1.2 - \pi \times 7.218^2$	M1 A1 [2]	Use of ½ co	$r^2\theta$ - needs $r=20$	and $\theta = 1.2$
	(iii) Angle Arc P	$e PCR = \pi - 1.2$ $R = 7.218 \times (\pi - 1.2) = (14.01)$	B1 M1	$co \\ Use of s = 2\pi/3$	$r\theta$ with $r = 7.21$	8 -any θ -even
	$OP = \longrightarrow Pe$	$POR = \frac{x}{\tan 0.6}$	M1 A1 [4]	Correct us co	se of trig or Pyth	agoras
	/ 10					