hun. trenepabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

1 Rearrange as $e^{3x} - e^{2} - 6 = 0$, or $u^2 - u - 6 = 0$, or equivalent Solve a 3-term quadratic for e^x or for u Obtain simplified solution $e^x = 3$ or $u = 3$ Obtain final answer $x = 1.10$ and no other 2 EITHER: Use chain rule obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent Use $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain final answer $\frac{dy}{dt} = -\cos t$ OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$ or equivalent Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$ or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$ or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$ or equivalent Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$ or equivalent Express derivative in terms of t Obtain inal answer $\frac{dy}{dx} = -\cos t$ A1 [5] 3 (i) EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ M1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form t to zero and solve for a , or equivalent Obtain answer $a = 1$ Obtain in $a + 1$ Obta		Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	,
Solve a 3-term quadratic for e^x or for u Obtain implified solution $e^x = 3$ or $u = 3$ Obtain final answer $x = 1.10$ and no other A1 2 EITHER: Use chain rule obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent A1 Obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent A1 Use $\frac{dy}{dt} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 OR: Express y in terms of x and use chain rule M1 Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^2$, or equivalent A1 Express y in terms of x and use chain rule M1 Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^2$, or equivalent A1 Express derivative in terms of t M1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain answer $\frac{dy}{dx} = -\cos t$ A1 Obtain answer $\frac{dy}{dx} = -\cos t$ A1 Since In the final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain answer $a = 1$ A1 OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ A1 Obtain answer $a = 1$ A1 OS Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ A1 OS Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to $x = 1$ A1 OS Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to $x = 1$ A1 OS Substitute $x = 1$ A1 OS Substitute $x = 1$ A1 OS Substitute $x = 1$ A2 OS Substitute $x = 1$ A3 State answer, e.g. $x = -3$ State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others 4 Separate variables and attempt integration of at least one side Obtain term $x = 1$ A1 Obtain and $x = 1$ A1 Obtain correct term $\frac{1}{2}$ In $x = 1$ A1 Obtain correct term $\frac{1}{2}$ In $x = 1$ A1 Obtain correct term $\frac{1}{2}$ In $x = 1$ A1 Obtain solution in any form, e.g. $x = 1$ A1 Obtain solution in any form, e.g. $x = 1$ A1 Obtain solution in any form, e.g. $x = 1$ A1 Obtain solution in any form, e			GCE AS/A LEVEL – October/November 2011	9709	32	
Obtain simplified solution $e^x = 3$ or $u = 3$ Obtain final answer $x = 1.10$ and no other 2 EITHER: Use chain rule obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent Obtain $\frac{dy}{dt} = -6 \cos^2 t \sin t$, or equivalent Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain final answer $\frac{dy}{dx} = -\cos t$ Al OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ Al Obtain final f	1					
Obtain final answer $x = 1.10$ and no other 2 EITHER: Use chain rule obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent obtain $\frac{dx}{dt} = 6 \cos^2 t \sin t$, or equivalent 1 Use $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain final answer $\frac{dy}{dx} = -\cos t$ 1 OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = 4(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = 4(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent 1 Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ 1 Obtain final answer $\frac{dy}{dx} = -\cos t$ 1 Obtain final answer $\frac{dy}{dx} = -\cos t$ 2 Obtain final answer $\frac{dy}{dx} = -\cos t$ 3 (i) EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ 1 Obtain quotient $x^2 + 4x + 3$ 2 Equate remainder of form k to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero Obtain answer $a = 1$ Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only carred if use of the equation $a = B - C$ is seen or implied.] 4 Separate variables and attempt integration of at least one side Obtain term $h(x + 1)$ and Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $a \ln x + 1 \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2} $ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2} $						
2 EITHER: Use chain rule obtain $\frac{dx}{dx} = 6 \sin t \cos t$, or equivalent obtain $\frac{dx}{dx} = 6 \cos^2 t \sin t$, or equivalent $\frac{dy}{dx} = -6 \cos^2 t \sin t$, or equivalent $\frac{dy}{dx} = -6 \cos^2 t \sin t$, or equivalent $\frac{dy}{dx} = -6 \cos^2 t \sin t$, or equivalent $\frac{dy}{dx} = -6 \cos^2 t \sin t$ MI Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 OR: Express y in terms of x and use chain rule $\frac{dy}{dx} = -\cos t$ A1 Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent $\frac{dy}{dx} = -\cos t$ A1 Express derivative in terms of t MI Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Signal EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ MI Obtain quotient $x^3 + 4x + 3$ A1 Equate remainder of form tx to zero and solve for a , or equivalent MI Obtain answer $a = 1$ A1 OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero MI Obtain a correct equation in a in any unsimplified form A1 Expand terms, use $\frac{1}{2} = -1$ and solve for a MI Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $4x^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others 4 Separate variables and attempt integration of at least one side Obtain term $\ln(x + 1)$ Obtain term $\ln(x + 1)$ and $\ln(x + 1)$ Obtain term $\ln(x + 1)$ in 2θ Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (\text{f.t. on } k = +1, +2, \text{ or } \pm \frac{1}{2})$ A1 $\sqrt{\frac{1}{2}}$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (\text{f.t. on } k = +1, +2, \text{ or } \pm \frac{1}{2})$ A1 $\sqrt{\frac{1}{2}}$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (\text{f.t. on } k = +1, +2, \text{ or } \pm \frac{1}{2})$ A1 $\sqrt{\frac{1}{2}}$ Obtain solution in any form, e.g.						F43
obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent obtain $\frac{dy}{dt} = -6 \cos^2 t \sin t$, or equivalent Use $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain final answor $\frac{dy}{dx} = -\cos t$ OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form tx to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ OS: Substitute a complex zero of a in any unsimplified form A1 Expand terms, use $a = 1$ Significant terms of a and solve for a and equation in a and an equation in a and/or a and equation in a and an equation in a and equation of the equation $a = b - C$ is seen or implied.] (ii) State answer, e.g. $a = -3$ M1 Obtain term $a = -3$ M2 Obtain term $a = -3$ M3 Obtain term $a = -3$ M4 Obtain term $a = -3$ M5 Obtain term $a = -3$ M6 Obtain term $a = -3$ M7 Obtain term $a = -3$ M8 Obtain term $a = -3$ M9 Obtain term $a = -3$ M1 Obtain term $a = -3$ M1 Obtain term $a = -3$ M1 Obtain term $a = -3$ M2 Obtain term $a = -3$ M3 Obtain term $a = -3$ M4 Obtain term $a = -3$ M5 Obtain term $a = -3$ M6 Obtain term $a = -3$ M7 Obtain term $a = -3$ M8 Obtain term $a = -3$ M9 Obtain term $a = -3$ M1 Obtain term $a = -3$ M1 Obtain te		Obtain finai	answer $x = 1.10$ and no other		Al	[4]
obtain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent Use $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain final answer $\frac{dy}{dx} = -\cos t$ OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{3}{2}}$, or equivalent Obtain $\frac{dy}{dx} = (2 - \frac{x}{3})^{\frac{3}{2}}$, or equivalent Al Obtain $\frac{dy}{dx} = (2 - \frac{x}{3})^{\frac{3}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ Al [5] 3 (i) EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ M1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form tx to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ Obtain answer $a = 1$ Is SR.: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or A . (ii) State answer, e.g. $x = -3$ Obtain term t in sin 2θ , where $t = 1, \pm 2$, or $t = \frac{1}{2}$ m, $t = 0$ in a solution containing terms a in $t = 0$. Obtain term t in sin $t = 0$, where $t = 1, \pm 2$, or $t = \frac{1}{2}$ m in a solution in any form, e.g. t in sin $t = 0$ in a solution containing terms a in $t = 0$. In any $t = 0$ in a solution in any $t = 0$ in a solution containing terms a in $t = 0$. Al Obtain term t in sin $t = 0$, where $t = 1, t = 0$ in a solution containing terms a in $t = 0$. Al Obtain term t in sin $t = 0$ and $t = 0$ in a solution containing terms $t = 0$ in any $t = 0$ in a solution in any $t = 0$ in any $t = 0$ in a solution containing terms $t = 0$ in any $t = 0$ in a solution in any $t = 0$ in any $t = 0$ in a solution containing terms $t = 0$ in $t = 0$	2	EITHER: U	Use chain rule		M1	
Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{3}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{3}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form tx to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or B , and the equation in B and an equation in B and an equation B and		(obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent		A1	
Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{3}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form tx to zero and solve for tx , or equivalent Obtain answer tx and 1 OR: Substitute a complex zero of tx and 2 and 3 and 4 and		(obtain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent		A1	
Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form k to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ OB: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ In [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others A1 Separate variables and attempt integration of at least one side Obtain term $\ln(x + 1)$ Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2})$ A1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2})$ A1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2})$ A1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2} (f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2})$			Gr.		M1	
OR: Express y in terms of x and use chain rule Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form k to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in p(x) and equate to zero M1 Obtain a correct equation in a in any unsimplified form A1 Expand terms, use $t^2 = -1$ and solve for a Obtain answer $a = 1$ In [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others B1 Separate variables and attempt integration of at least one side Obtain term $h(x + 1)$ Obtain term k In sin 2θ , where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ Obtain correct term $\frac{1}{2}$ In sin 2θ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2}\ln\sin 2\theta - \frac{1}{2}\ln\frac{1}{2}(f.t. \text{ on } k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2})$ A1 $\sqrt{\frac{1}{2}}$						
Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 Signature Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ M1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form k to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain a correct equation in a in any unsimplified form A1 Expand terms, use $t^2 = -1$ and solve for a Obtain answer $a = 1$ Obtain answer $a = 1$ In Expand terms, use $t^2 = -1$ and solve for a Obtain answer $a = 1$ Obtain answer $a = 1$ In Expand terms, use $t^2 = -1$ and solve for a Obtain answer $a = 1$ Obtain answer $a = 1$ In Expand terms, use $t^2 = -1$ and solve for a Obtain answer $a = 1$ In Expand terms, use $t^2 = -1$ and solve for a Obtain answer, $a = 1$ In Expand terms, use $a = 1$ In Expand terms, use $a = 1$ Obtain answer, $a = 1$ In Expand terms, use $a = 1$ A1 Obtain answer, $a = 1$ In Expand terms, use $a = 1$ A1 Obtain answer, $a = 1$ In Expand terms, use $a = 1$ A1 Obtain term $a = 1$ Obtain term			$\mathbf{d}x$			
Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 [5] 3 (i) EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ Obtain quotient $x^2 + 4x + 3$ Equate remainder of form k to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain a correct equation in a in any unsimplified form Expand terms, use $t^2 = -1$ and solve for a Obtain answer $a = 1$ [4] [5] 18 [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others B1 [2] 4 Separate variables and attempt integration of at least one side Obtain term $\ln(x + 1)$ Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$			1			
Express derivative in terms of t M1 Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 [5] 3 (i) EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ M1 Obtain quotient $x^2 + 4x + 3$ A1 Equate remainder of form tx to zero and solve for a , or equivalent Obtain answer $a = 1$ A1 OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain answer $a = 1$ A1 Expand terms, use $i^2 = -1$ and solve for a M1 Obtain answer $a = 1$ A1 [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ B1 State answer, e.g. $x = -1$ and no others B1 Obtain term $tx + 1$ in sin $tx + 2$ or $tx + 2$ in a solution containing terms $tx + 2$ in and $tx + 3$ in an $tx + 4$ in sin $tx + $			ar 3		A1	
Express derivative in terms of t Obtain final answer $\frac{dy}{dx} = -\cos t$ A1 [5] 3 (i) EITHER: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ M1 Obtain quotient $x^2 + 4x + 3$ Equate remainder of form kx to zero and solve for a , or equivalent Obtain answer $a = 1$ OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2 = -1$ and solve for a Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others B1 [2] 4 Separate variables and attempt integration of at least one side Obtain term k ln $\sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$		(Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent		A1	
3 (i) <i>EITHER</i> : Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ M1 Obtain quotient $x^2 + 4x + 3$ A1 Equate remainder of form k to zero and solve for a , or equivalent M1 Obtain answer $a = 1$ A1 OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero M1 Obtain a correct equation in a in any unsimplified form A1 Expand terms, use $i^2 = -1$ and solve for a M1 Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ B1 State answer, e.g. $x = -1$ and no others B1 4 Separate variables and attempt integration of at least one side Obtain term $\ln(x + 1)$ A1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1 Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$		I	Express derivative in terms of t		M1	
Obtain quotient $x^2 + 4x + 3$ Equate remainder of form lx to zero and solve for a , or equivalent lx M1 Obtain answer $a = 1$ A1 OR: Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero lx M1 Obtain a correct equation in a in any unsimplified form A1 Expand terms, use $i^2 = -1$ and solve for a M1 Obtain answer $a = 1$ A1 [4] [5R: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in a and/or a 0. The second M1 is only earned if use of the equation $a = B - C$ 1 is seen or implied.] (ii) State answer, e.g. $a = -3$ B1 State answer, e.g. $a = -1$ and no others B1 4 Separate variables and attempt integration of at least one side Obtain term $a = b = b$ 0. Where $a = b$ 1 M1 Obtain correct term $a = b$ 2 M1 Obtain correct term $a = b$ 3 M2 Evaluate a constant, or use limits $a = b$ 4 M1 Obtain solution in any form, e.g. $a = b$ 6 in a solution containing terms $a = b$ 6 M1 Obtain solution in any form, e.g. $a = b$ 6 in a solution containing terms $a = b$ 7 M1 Obtain solution in any form, e.g. $a = b$ 7 M1 Obtain solution in any form, e.g. $a = b$ 8 M1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form, e.g. $a = b$ 9 N1 Obtain solution in any form in any fo		(Obtain final answer $\frac{dy}{dx} = -\cos t$		A 1	[5]
Obtain quotient $x^2 + 4x + 3$ Equate remainder of form lx to zero and solve for a , or equivalent lx to zero and solve for a , or equivalent lx to zero and solve for a , or equivalent lx to zero and solve for a , or equivalent lx to zero and solve for a and lx to zero l	2	(i) FITHE	Pr. Attempt division by $x^2 - x + 1$ reaching a partial quotient of	$x^2 + bx$	М1	
Equate remainder of form lx to zero and solve for a , or equivalent Obtain answer $a=1$ OR: Substitute a complex zero of x^2-x+1 in $p(x)$ and equate to zero M1 Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2=-1$ and solve for a Obtain answer $a=1$ [SR: The first M1 is earned if inspection reaches an unknown factor x^2+Bx+C and an equation in B and/or C , or an unknown factor Ax^2+Bx+3 and an equation in A and/or B . The second M1 is only earned if use of the equation $a=B-C$ is seen or implied.] (ii) State answer, e.g. $x=-3$ State answer, e.g. $x=-1$ and no others B1 Obtain term $ln(x+1)$ Obtain term $ln(x+1)$ Obtain term $ln(x+1)$ Obtain correct term $ln(x+1)$ Obtain correct term $ln(x+1)$ Obtain correct term $ln(x+1)$ Obtain correct term $ln(x+1)$ Obtain solution in any form, e.g. $ln(x+1)=\frac{1}{2}ln\sin 2\theta$ A1 Obtain solution in any form, e.g. $ln(x+1)=\frac{1}{2}ln\sin 2\theta-\frac{1}{2}ln\frac{1}{2}$ (f.t. on $k=\pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{1}$	3	(I) LITTL	Obtain quotient $x^2 + 4x + 3$	OI X KX		
Obtain answer $a=1$ OR: Substitute a complex zero of x^2-x+1 in $p(x)$ and equate to zero M1 Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2=-1$ and solve for a Obtain answer $a=1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a=B-C$ is seen or implied.] (ii) State answer, e.g. $x=-3$ State answer, e.g. $x=-1$ and no others B1 Obtain term $\ln(x+1)$ Obtain term k ln sin 2θ , where $k=\pm 1, \pm 2$, or $\pm \frac{1}{2}$ Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x=0$ in a solution containing terms $a \ln(x+1)$ and $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k=\pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$				iivalent		
Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2 = -1$ and solve for a Obtain answer $a = 1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ State answer, e.g. $x = -1$ and no others B1 Separate variables and attempt integration of at least one side Obtain term $\ln(x + 1)$ Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$			Obtain answer $a = 1$		A 1	
Expand terms, use $i^2 = -1$ and solve for a M1 Obtain answer $a = 1$ A1 [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ B1 State answer, e.g. $x = -1$ and no others B1 Obtain term $\ln(x + 1)$ A1 Obtain term $\ln(x + 1)$ A1 Obtain correct term $\ln(x + 1)$ A1 Obtain correct term $\ln(x + 1)$ A1 Obtain correct term $\ln(x + 1)$ A1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta$ A1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{1}$		OR:		to zero		
Obtain answer $a=1$ [SR: The first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . The second M1 is only earned if use of the equation $a = B - C$ is seen or implied.] (ii) State answer, e.g. $x = -3$ B1 State answer, e.g. $x = -1$ and no others B1 Separate variables and attempt integration of at least one side Obtain term $\ln(x + 1)$ A1 Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1 Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{1}$						
 [SR: The first M1 is earned if inspection reaches an unknown factor x² + Bx + C and an equation in B and/or C, or an unknown factor Ax² + Bx + 3 and an equation in A and/or B. The second M1 is only earned if use of the equation a = B - C is seen or implied.] (ii) State answer, e.g. x = -3 State answer, e.g. x = -1 and no others B1 State answer, e.g. x = -1 and no others 4 Separate variables and attempt integration of at least one side Obtain term ln(x + 1) Obtain term k ln sin 2θ, where k = ±1, ±2, or ±½ M1 Obtain correct term ½ ln sin 2θ Evaluate a constant, or use limits θ = ½π, x = 0 in a solution containing terms a ln(x + 1) and b ln sin 2θ Obtain solution in any form, e.g. ln(x + 1) = ½ ln sin 2θ - ½ ln ½ (f.t. on k = ±1, ±2, or ±½) A1√ 			•			F 4 3
State answer, e.g. $x = -1$ and no others B1 [2] 4 Separate variables and attempt integration of at least one side Obtain term $\ln(x+1)$ Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x+1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$		equation	the first M1 is earned if inspection reaches an unknown factor on in B and/or C, or an unknown factor $Ax^2 + Bx + 3$ and an eq	uation in A and/or B .	Al	[4]
State answer, e.g. $x = -1$ and no others B1 [2] 4 Separate variables and attempt integration of at least one side Obtain term $\ln(x+1)$ Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x+1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$		(ii) State a	nswer, e.g. $x = -3$		B1	
Obtain term $\ln(x+1)$ A1 Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1 Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x+1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$					B1	[2]
Obtain term $\ln(x+1)$ A1 Obtain term $k \ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1 Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1 Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x+1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$	4	Separate var	riables and attempt integration of at least one side		M1	
Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1 Evaluate a constant, or use limits $\theta = \frac{1}{12} \pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x + 1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$		Obtain term	ln(x+1)			
Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x+1)$ and $b \ln \sin 2\theta$ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$						
b ln sin 2θ M1 Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1 $\sqrt{\frac{1}{2}}$			2	erms $a \ln(x+1)$ and		
					M1	
Rearrange and obtain $x = \sqrt{(2\sin 2\theta)} - 1$, or simple equivalent A1 [7]		Obtain solu	tion in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \frac{1}{2} \ln \frac{1}{2}$)	$\pm 1, \pm 2, \text{ or } \pm \frac{1}{2})$	A 1√	
		Rearrange a	nd obtain $x = \sqrt{(2\sin 2\theta)} - 1$, or simple equivalent		A1	[7]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9709	32	
5	(i)		ognisable sketch of a relevant graph over the given interval e other relevant graph and justify the given statement		B1 B1	[2]
	(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2} x^2)$ at $x = 1$ and $x = 1.4$, or equival	ent	M1	
		Complete	e the argument with correct calculated values		A1	[2]
	(iii)	Convert ti	he given equation to $\sec x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
	(iv)	Obtain final answer 1.13 Show sufficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show there is a sign change		M1 A1		
		in the inte	erval (1.125, 1.135) cessive evaluation of the iterative function with $x = 1, 2,$		A1	[3]
6	(i)	State or in	$mply R = \sqrt{10}$		B1	
			Formulae to find α		M1	
			= 71.57° with no errors seen allow radians in this part. If the only trig error is a sign err	or in $\cos(x - \alpha)$ give	A1	[3]
	(ii)	Evaluate	$\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (All	ow 50.7° here)	В1√	
	(11)		an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 18$	·	M1	
		•	answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$		A1	
		Use an ap	propriate method to find another value of 2θ in the above ra	inge	M1	
		[Ignore as [Treat and [SR: The	scond angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range inswers outside the given range.] swers in radians as a misread and deduct A1 from the answer use of correct trig formulae to obtain a 3-term quadrater.	tic in tan θ , $\sin^2 2\theta$,		[5]
		in the giv	tan 2θ earns M1; then A1 for a correct quadratic, M1 for or en range, and A1 + A1 for the two correct answers (candida spurious roots to get the final A1).]			

		GOL AGIA LEVEL GOLGBEITHOVCIIIBEI ZOTT	<u> </u>		
7	(i)	Use a correct method to express \overrightarrow{OP} in terms of λ Obtain the given answer	M1 A1	[2]	
	(ii)	EITHER: Use correct method to express scalar product of \overrightarrow{OA} and \overrightarrow{OP} , or \overrightarrow{OB} and \overrightarrow{OP} in terms of λ Using the correct method for the moduli, divide scalar products by products of moduli and express $\cos AOP = \cos BOP$ in terms of λ , or in terms of λ and OP Use correct method to express $OA^2 + OP^2 - AP^2$, or $OB^2 + OP^2 - BP^2$ in terms of λ Using the correct method for the moduli, divide each expression by twice the product of the relevant moduli and express $\cos AOP = \cos BOP$ in terms of λ , or λ and OP	M1*		
		Obtain a correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}} = \frac{11+14\lambda}{5\sqrt{(9+4\lambda+12\lambda^2)}}$	A1		
		Solve for λ M1 Obtain $\lambda = \frac{3}{8}$ [SR: The M1* can also be earned by equating $\cos AOP$ or $\cos BOP$ to a sound attempt at $\cos \frac{1}{2} AOB$ and obtaining an equation in λ . The exact value of the cosine is $\sqrt{(13/15)}$, but accept non-exact working giving a value of λ which rounds to 0.375, provided the spurious negative root of the quadratic in λ is rejected.]		[5]	
		[SR: Allow a solution reaching $\lambda = \frac{3}{8}$ after cancelling identical incorrect expressions for <i>OP</i> to score 4/5. The marking will run M1M1A0M1A1, or M1M1A1M1A0 in succases.]			
	(iii)	Verify the given statement correctly	B1	[1]	
8	(i)	Use any relevant method to determine a constant Obtain one of the values $A = 3$, $B = 4$, $C = 0$ Obtain a second value Obtain the third value	M1 A1 A1 A1	[4]	
	(ii)	Integrate and obtain term $-3 \ln(2-x)$ Integrate and obtain term $k \ln(4+x^2)$ Obtain term $2 \ln(4+x^2)$ Substitute correct limits correctly in a complete integral of the form	B1√ M1 A1√		
		Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2)$, $ab \neq 0$ Obtain given anywer following full and correct working	M1	[5]	

Mark Scheme: Teachers' version

GCE AS/A LEVEL - October/November 2011

Syllabus

9709

Paper

32

A1

[5]

Page 6

Obtain given answer following full and correct working

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	ſ
			GCE AS/A LEVEL – October/November 2011	9709	32	
9	(i)	Equate de	act rule arrect derivative in any form erivative to zero and solve for x swer $x = e^{-\frac{1}{2}}$, or equivalent		M1 A1 M1 A1	
		Obtain an	swer $y = -\frac{1}{2} e^{-1}$, or equivalent		A1	[5]
	(ii)	Attempt i	ntegration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$		M1*	
		Obtain $\frac{1}{3}$.	$x^3 \ln x - \frac{1}{3} \int x^2 dx$, or equivalent		A1	
		Integrate	again and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3$, or equivalent		A1	
		Use limits	s $x = 1$ and $x = e$, having integrated twice swer $\frac{1}{9}(2e^3 + 1)$, or exact equivalent		M1(dep*) A1	[5]
			attempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ score	es M1. Then give	the	
			or $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]			
			J			
10	(a)	EITHER:	Square $x + iy$ and equate real and imaginary parts to 1 and	$1 - 2\sqrt{6}$ respective	ely M1*	
			Obtain $x^2 - y^2 = 1$ and $2xy = -2\sqrt{6}$		A1	
			Eliminate one variable and find an equation in the other Obtain $x^4 - x^2 - 6 = 0$ or $y^4 + y^2 - 6 = 0$, or 3-term equivalence of $\sqrt{2}$		M1(dep*) A1	
		0.5	Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$	\(\sigma\) \(\sigma\) \(\sigma\)	A1	[5]
		OR:	Denoting $1-2\sqrt{6i}$ by $R \operatorname{cis} \theta$, state, or imply, square ro	ots are $\pm \sqrt{R} \operatorname{cis}(\frac{1}{2})$		
			and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$ Obtain $\pm \sqrt{5} (\cos \frac{1}{2} \theta + i \sin \frac{1}{2} \theta)$, and $\cos \theta = \frac{1}{5}$ or	$\sin \theta = -\frac{2\sqrt{6}}{2}$	M1*	
			$\tan \theta = -2\sqrt{6}$	$\frac{1}{5}$	A1	
			Use correct method to find an exact value of $\cos \frac{1}{2}\theta$ or si	$n - \theta$	M1(dep*)	
			Obtain $\cos \frac{1}{2}\theta = \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2}\theta = \pm \sqrt{\frac{2}{5}}$, or equivalent	2	A1	
			Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$, or equivalent		A1	
			[Condone omission of \pm except in the final answers.]			
	<i>a</i> `	CI.			D .1	
	(b)		nt representing 3i on a sketch of an Argand diagram arcle with centre at the point representing 3i and radius 2		B1 B1√	
		Shade the	interior of the circle		B1√	
		-	a complete method for finding the greatest value of arg z swer 131.8° or 2.30 (or 2.3) radians		M1 A1	[5]
			s on solutions where the centre is at the point representing —	2; 1	AI	[5]

[The f.t. is on solutions where the centre is at the point representing –3i.]