MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© University of Cambridge International Examinations 2011

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \sqrt{n} " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© University of Cambridge International Examinations 2011

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS/A LEVEL – May/June 2011	9709	32	
1	EITHER:	State or imply non-modular inequality $x^2 < (5+2x)^2$ equation, or pair of linear equations $x = \pm (5+2x)$, or corresponding	g M1	
		Obtain critical values -5 and $-\frac{5}{3}$ only		A1	
		Obtain final answer $x < -5$, $x > -\frac{5}{3}$		A1	
	OR:	State one critical value e.g. –5, by solving a linear equat from a graphical method, or by inspection	ion or inequality, or	: B1	
		State the other critical value, e.g. $-\frac{5}{3}$, and no other		B1	
		Obtain final answer $x < -5$, $x > -\frac{5}{3}$		B1	[3]
		[Do not condone \leq or \geq .]			
2	Use log ₂	for the logarithm of a product or quotient $32 = 5$ or $2^5 = 32$ $x^2 + 5x - 32 = 0$, or horizontal equivalent		M1 M1 A1	[3]
	• •	3-term quadratic equation		M1	
	Obtain a	answer $x = 3.68$ only, or exact equivalent, e.g. $\frac{\sqrt{153} - 5}{2}$		A1	[2]
3	Obtain 8cos ² Solve a 3-ter Obtain answe Obtain answe [Ignore answ misread.]	rig formula (or formulae) and obtain an equation in $\cos\theta$ $\theta + \cos\theta - 7 = 0$, or equivalent m quadratic in $\cos\theta$ and reach $\theta = \cos^{-1}(a)$ er 29.0° er 180° and no others rers outside the given interval. Treat answers in radians (0.50 wer 180° found by inspection can earn B1.]	95 and 3.14 or π) as a	M1 A1 M1 A1 A1	[5]
4	Using co	imply $CT = r \tan x$ or $OT = r \sec x$, or equivalent prrect area formulae, form an equation in r and x he given answer correctly		B1 M1 A1	[3]
	Obtain t	iterative formula correctly at least once he final answer 1.35		M1 A1	
		ifficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or in the interval (1.345, 1.355)	show there is a sign	A1	[3]

© University of Cambridge International Examinations 2011

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2011	9709	32	
5	(i)	EITHER:	State $\frac{dx}{dt} = \sec^2 t / \tan t$, or equivalent		B1	
			State $\frac{dy}{dt} = 2\sin t \cos t$, or equivalent		B1	
			Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1	
		OR:	Obtain correct answer in any form, e.g. $2\sin^2 t \cos^2 t$ Obtain $y = e^{2x} / (1 + e^{2x})$, or equivalent		A1 B1	
			Use correct quotient or product rule 2^{2r}	2	M1	
			Obtain correct derivative in any form, e.g. $2e^{2x} / (1 + e^{2x})$ Obtain correct derivative in terms of <i>t</i> in any form, e.g. ($2\tan^2 t) / (1 + \tan^2 t)^2$	A1 A1	[4]
	(ii)	State or in	nply $t = \frac{1}{4}\pi$ when $x = 0$		B1	
		Form the equation of the tangent at $x = 0$		M1		
		Obtain co	rrect answer in any horizontal form, e.g. $y = \frac{1}{2}x + \frac{1}{2}$		A1	[3]
		[SR: If th	ne OR method is used in part (i), give B1 for stating or	implying $y = \frac{1}{2}$ or		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \mathrm{w}$	when $x = 0.$]			
6	(i)	Show that	the differential equation is $\frac{dy}{dx} = 2xy$		B1	
		Separate v Obtain ter Obtain ter Evaluate a Obtain co	variables correctly and attempt integration of both sides rm ln y, or equivalent rm x^2 , or equivalent a constant, or use limits $x = 1$, $y = 2$, in a solution containing rrect solution in any form e given answer correctly	g terms $a \ln y$ and $b x^2$	M1 A1 A1 M1 A1 A1	[7]
	(ii)		the gradient at $(-1, 2)$ is -4	1	B1	
		symmetry	e sketch of curve with correct concavity, positive y-in x = 0 lution with $k \neq 2$, or not evaluated, can earn B0M1A1A1M1	-	B1	[2]
		[SR: If gi	ven answer is assumed valid, give B1 if $\frac{dy}{dx}$ is shown con	rectly to be equal to		
		•				

2xy, is stated to be proportional to xy, and shown to be equal to 4 at (1, 2).]

© University of Cambridge International Examinations 2011

Pa	ge 6	Mark Scheme: Teachers' version Syllabus	Paper	·
		GCE AS/A LEVEL – May/June 2011 9709	32	
(a)	(i) <i>EITI</i>	<i>HER</i> : Multiply numerator and denominator by $a - 2i$, or equivalent	M1	
		Obtain final answer $\frac{5a}{a^2+4} - \frac{10i}{a^2+4}$, or equivalent	A1	
	OR:	Obtain two equations in x and y, solve for x or for y	M1	
		Obtain final answer $x = \frac{5a}{a^2 + 4}$ and $y = \frac{10}{a^2 + 4}$, or equivalent	A1	[2
	(ii) Eith	er state $\arg(u) = -\frac{3}{4}\pi$, or express u^* in terms of a (f.t. on u)	B1√	
	Use	correct method to form an equation in <i>a</i> , e.g. $5a = -10$ in $a = -2$ correctly	M1 A1	[3
(b)	Show the	oint representing $2 + 2i$ in relatively correct position in an Argand diagram circle with centre at the origin and radius 2	B1 B1	
	represent Shade the	e perpendicular bisector of the line segment from the origin to the point ing $2 + 2i$ e correct region e the first B1 and the B1 $$ for obtaining $y = 2 - x$, or equivalent, and sketching pt.]	B1√ B1	[4
(i)	State or i	mply partial fractions are of the form $\frac{A}{1+r} + \frac{Bx+C}{2+r^2}$	B1	
	Use a rele	evant method to determine a constant	M1	
		the of the values $A = -2$, $B = 1$, $C = 4$ second value	A1 A1	
		e third value	A1 A1	[:
(ii)		ect method to obtain the first two terms of the expansion of $(1+x)^{-1}$,		
	$\left(1+\frac{1}{2}x^2\right)$	\int_{-1}^{-1} or $(2 + x^2)^{-1}$ in ascending powers of x	M1	
	Multiply	prect unsimplified expansion up to the term in x^3 of each partial fraction $A1\sqrt{-1}$ out fully by $Bx + C$, where $BC \neq 0$	⊦ A1√ M1	
	Obtain fi	hal answer $\frac{5}{2}x - 3x^2 + \frac{7}{4}x^3$, or equivalent	A1	[4
	[Symboli	c binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, are not sufficient for the first M1. The f.t. is		
	(ii) , max	C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}\sqrt{in}$		
	expansion	hs, M1 for the multiplying out fully, and A1 for the final answer.] se of Maclaurin, giving M1A1 $\sqrt{A1}\sqrt{1}$ for differentiating and obtaining f(0) = 0		

and $f'(0) = \frac{5}{2}$, $A1\sqrt{for} f''(0) = -6$, and A1 for $f'''(0) = \frac{21}{2}$ and the final answer (the f.t. is on *A*, *B*, *C* if used).] [For the identity $5x - x^2 = (2 + 2x + x^2 + x^3)(a + bx + cx^2 + dx^3)$ give M1A1; then M1A1

for using a relevant method to obtain two of a = 0, $b = \frac{5}{2}$, c = -3 and $d = \frac{7}{4}$; then A1 for the final answer in cories form 1

the final answer in series form.]

© University of Cambridge International Examinations 2011

A LEVEL – May/June 2011 al vector to either plane, e.g. $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ evaluating the scalar product of the two the moduli, divide the scalar product l se cosine of the result	normals	32 B1 M1			
evaluating the scalar product of the two the moduli, divide the scalar product l	normals				
-	as the product of t				
(or 1.39 radians)	by the product of t	M1 A1	[4]		
(or respirations)		111	ι.		
<i>EITHER</i> : Carry out a method for finding a point on the line Obtain such a point, e.g. (1, 3, 0)					
÷ · · ·	n votor (a, b, a)	A1			
e two correct equations for the direction line $a = a + 2b$, $2a = 0$ and $2a + b + 3$		B1			
line, e.g. $a + 2b - 2c = 0$ and $2a + b + 3$ ve for one ratio, e.g. $a : b$	c = 0	M1			
ain $a:b:c=8:-7:-3$, or equivalent		A1			
e a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{j}$	$-\lambda(8i - 7i - 3k)$	A1√			
ain a second point on the line, e.g. $\left(0, \frac{2}{3}\right)$		A1			
tract position vectors to find a direction	0 0)	M1			
ain $\mathbf{i} - \frac{7}{8}\mathbf{j} - \frac{3}{8}\mathbf{k}$, or equivalent		A1			
e a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j}$	$-\lambda(\mathbf{i}-\frac{7}{8}\mathbf{j}-\frac{3}{8}\mathbf{k})$	A1√			
empt to calculate the vector product of t	wo normals	M1			
		A1			
ain $8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k}$, or equivalent		A1			
	$-\lambda(8\mathbf{i}-7\mathbf{j}-3\mathbf{k})$	A1√			
able in terms of a second		M1			
	/ 7	A1			
	3				
		M1			
hal answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(8\mathbf{i} - \mathbf{k})$	7 j – 3 k)	A1√			
able in terms of a second		M1			
	/ 7	A1			
		M1			
· · · ·	8	A1			
uation of the line		M1			
nal answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(-8\mathbf{i}$	+ 7 j + 3 k)	A1√ [[6]		
	empt to calculate the vector product of tr ain two correct components ain $8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k}$, or equivalent e a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{j}$ able in terms of a second simplified expression, e.g. $x = (31 - 8y)$ variable in terms of a third simplified expression, e.g. $x = (3 - 8z)/2$ uation of the line nal answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(8\mathbf{i} - 3\mathbf{k})$ able in terms of a second simplified expression, e.g. $y = (31 - 7x)$ variable in terms of the second	empt to calculate the vector product of two normals ain two correct components ain $8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k}$, or equivalent e a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + \lambda(8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k})$ able in terms of a second simplified expression, e.g. $x = (31 - 8y) / 7$ variable in terms of a third simplified expression, e.g. $x = (3 - 8z) / 3$ puation of the line nal answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k})$ able in terms of a second simplified expression, e.g. $y = (31 - 7x) / 7$ variable in terms of the second simplified expression, e.g. $z = (3 - 3x) / 8$	empt to calculate the vector product of two normalsM1ain two correct componentsA1ain $8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k}$, or equivalentA1e a correct final answer, e.g. $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + \lambda(8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k})$ A1 $$ able in terms of a secondM1simplified expression, e.g. $x = (31 - 8y) / 7$ A1variable in terms of a thirdM1simplified expression, e.g. $x = (3 - 8z) / 3$ A1uation of the lineM1nal answer, e.g. $\mathbf{r} = \frac{31}{8}\mathbf{j} + \frac{3}{8}\mathbf{k} + \lambda(8\mathbf{i} - 7\mathbf{j} - 3\mathbf{k})$ A1 $$ able in terms of a secondM1simplified expression, e.g. $y = (31 - 7x) / 7$ A1variable in terms of the secondM1simplified expression, e.g. $z = (3 - 3x) / 8$ A1uation of the lineM1		

© University of Cambridge International Examinations 2011

	Page 8		Mark Scheme: Teachers' version	Syllabus	Paper	٢
			GCE AS/A LEVEL – May/June 2011	9709	32	
10	(i)	Attempt i	ntegration by parts and reach $\pm x^2 e^{-x} \pm \int 2x e^{-x} dx$		M1*	
		Obtain – .	$x^2 e^{-x} + \int 2x e^{-x} dx$, or equivalent		A1	
		Integrate and obtain $-x^2e^{-x} - 2xe^{-x} - 2e^{-x}$, or equivalent Use limits $x = 0$ and $x = 3$, having integrated by parts twice Obtain the given answer correctly			A1 M1(0 A1	lep*) [5]
	(ii)	Obtain co Equate de	ct product or quotient rule rrect derivative in any form erivative to zero and solve for non-zero x = 2 with no errors send		M1 A1 M1 A1	[4]
	(iii)	Carry out Obtain an	a complete method for finding the <i>x</i> -coordinate of <i>P</i> swer $x = 1$		M1 A1	[2]

© University of Cambridge International Examinations 2011