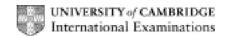
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9709 MATHEMATICS

9709/71


Paper 71, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	71

Mark Scheme Notes

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	71

Penalties

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	71

1 X ~ P(X	B(180, 0.02) ~ Po(3.6) < 4) = e ^{-3.6} (1 + 3.6 + 3.6 ² / 2 + 3.6 ³ / 6) = 0.515	B1 M1 A1	[3]	Poisson with mean 180×0.02 Poisson attempt with their allow end errors Correct answer SR_1 Use of Bin scores B1 only for ans 0.514 SR_2 Use of Normal scores B1 only for 0.479
2 1.96 n = 3	$0 \times \frac{1.5}{\sqrt{n}} < \frac{1}{2}$	B1 B1 M1	[4]	$1.96 \times \frac{1.5}{\sqrt{n}}$ seen Confidence interval halved Solving an equation in their z, 1.5, n (2 and sq rt not needed) Correct answer (condone n 35)
3 (i)	$P(\overline{W} > 51) = P z > \frac{51 48.5}{12.4 / \sqrt{5}}$ = 1 - (0.451) = 1 - 0.674 = 0.326	M1 M1 A1	[3]	Standardising with 51 and mean 48.5 Standardising using 5 Correct answer
(ii)	z = 1.5 or 1.499 $\frac{51.6 48.5}{(12.4 / \sqrt{n})} = 1.5$ $\sqrt{n} = 6$ $n = 36$	B1 M1 M1 A1	[4]	1.5 or 1.499 seen Standardising must have \sqrt{n} (no cc) Attempt to solve equation with \sqrt{n} , their z in correct answer
4 (i)	$P(X > 4) = 1 - P(0, 1, 2, 3, 4)$ $= 1 - e^{-1.8} + 1 + 1.8 + \frac{1.8^{2}}{2} + \frac{1.8^{3}}{3!} + \frac{1.8^{4}}{4!}$ $= 1 - 0.9635$ $= 0.036(4)$ This is < 0.05 and so X > 4 is in the critical region $P(4) = e^{-1.8} + \frac{1.8^{4}}{4!} = 0.0723$	M1 M1 A1 A1ft	[5]	Adding at least 3 relevant Poisson terms Poisson expression for P(X > 4) (oe implied by later working) Correct prob 0.036 (or 0.96 subject to later working) Correct comparison and statement identifying CR (ft their prob < 0.05) Verification that X = 4 is not in the cr region
(ii)	P(Type II error) = P(X = 0, 1, 2, 3, 4) = $e^{2.3} 1 + 2.3 + \frac{2.3^2}{2} + \frac{2.3^3}{3!} + \frac{2.3^4}{4!}$ = 0.916	B1 M1 A1	[3]	Correct region Poisson expression P(0, 1, 2, 3, 4) Correct answer

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	71

		,		
5	(i) $k \cos x dx = 1$ 0 $[k \sin x]_0^{/4} = 1$	M1		Equating to 1 and attempt to integrate with limits
	k sin (/4) = 1	A1	[2]	Correct answer legit obtained (no decimals seen)
	(ii) $k \cos x dx = [k \sin x]_{0.4}^{/4}$	M1		Attempt to integrate from 0.4 to /4 o.e.
	= 1 - k sin(0.4) = 0.449	A1	[2]	Correct answer
	(iii) $k \cos x dx = 0.75$	M1		Equation with integral on one side and 0.75 on the other o.e.
	$[k \sin x]_0^{Q3} = 0.75$	M1		Attempt to solve their integral for Q3
	$k \sin Q3 - 0 = 0.75$ Q3 = 0.559	A1	[3]	Correct answer
	(iv) ${}^{5}C_{3} \times (0.25)^{3} \times (0.75)^{2}$	M1		Binomial expression involving ⁵ C ₃ , 0.25 and
	= 0.0879 (45/512)	A1	[2]	0.75 Correct answer
6	(i) $\overline{x} = 14.8 (890/60 \text{ oe})$	B1		Correct answer
	$s^2 = \frac{1}{59} 13780 \frac{890^2}{60}$	M1		Substituting in formula from book, o.e.
	= 9.80	A1	[3]	Correct answer
	(ii) H_0 : $\mu = 15.2$ H_1 : $\mu < 15.2$ $P(Type \ I \ error) = 0.1 (10%)$	B1 B1		Correct H ₁ and H ₀ Correct answer
	Say the photographer has fewer discards when she doesn't	B1ft	[3]	o.e. must be related to question. No contradictions. ft their H₁
	(iii) Test statistic z = $\frac{14.83 15.2}{\sqrt{\frac{9.802}{60}}}$	M1		Standardising must have $\sqrt{60}$
	V 60 = -0.915	A1		Correct z (-0.91 to 0.92) or correct area 0.18
	$CV z = \pm 1.282$	M1		Valid comparison with correct CV must be + with + or – with – and consistent with their H ₁ oe comparison of areas
	Not enough evidence to support photographer's claim.	A1ft	[4]	Correct conclusion ft their z and their CV No contradictions

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	71

7	(i)	$3C \sim N(990, 5.2^2 \times 3) \ (= N(990, 81.12))$	B1		Correct mean for both 3 cans cola and 2 bottles water
		$2W \sim N(1000, 7.1^2 \times 2 (= N(1000, 100.82))$	B1		Correct variance for both 3 cans cola and 2 bottles water
		3C – 2W ~ N(–10, 181.94)	M1		Correct method for mean and variance for
		$P((3C - 2W) < 0) = \frac{0 (10)}{\sqrt{181.94}}$	M1		3C – 2W or vice versa Standardising and using tables, need the sq root and area > 0.5
		= (0.741)			
		= 0.771	A1	[5]	Correct answer
	(ii)	new drink ~ N(910, $2 \times 5.2^2 + 0.5^2 \times 7.1^2$) ~ N (910, 66.68)	B1 B1		Correct mean for new drink Correct variance for new drink
		$P(ND > 900) = 1 - P z < \frac{900 910}{\sqrt{66.68}}$	M1		Standardising with sq rt and using tables
		= 1 - P(z < -1.225)			
		= (1.225)			
		= 0.8897 (0.890)	A1	[4]	Correct answer