MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 31, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2009

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \sqrt{n} " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2009

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE A/AS LEVEL – October/November 2009	9709	31	
1	EITHER:	State or imply non-modular inequality $(2 - 3x)^2 < (x - 3)^2$, or co and make a reasonable solution attempt at a 3-term quadratic Obtain critical value $x = -\frac{1}{2}$	orresponding equat	ion, M1 A1	
		Obtain $x > -\frac{1}{2}$		A1	
		Fully justify $x > -\frac{1}{2}$ as only answer		A1	
	<i>OR</i> 1:	State the relevant critical linear equation, i.e. $2 - 3x = 3 - x$ Obtain critical value $x = -\frac{1}{2}$		B1 B1	
		Obtain $x > -\frac{1}{2}$		B1	
		Fully justify $x > -\frac{1}{2}$ as only answer		B1	
	OR2:	Obtain the critical value $x = -\frac{1}{2}$ by inspection, or by solving a l	inear inequality	B2	
		Obtain $x > -\frac{1}{2}$		B1	
		Fully justify $x > -\frac{1}{2}$ as only answer		B1	
	OR3:	Make recognisable sketches of $y = 2 - 3x$ and $y = x - 3 $ on a si Obtain critical value $x = -\frac{1}{2}$	ngle diagram	B1 B1	
		Obtain $x > -\frac{1}{2}$		B1	
		Fully justify $x > -\frac{1}{2}$ as only answer		B1	[4]
		[Condone \geq for $>$ in the third mark but not the fourth.]			
2	EITHER:	Use laws of indices correctly and solve a linear equation for 3^x , 3^2	or for 3^{-x}	M1	
		Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$		A1	
		Use correct method for solving $3^{\pm x} = a$ for x, where $a > 0$ Obtain answer $x = 0.107$		M1 A1	
	OR:	State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{x_n} + 9)}{\ln 3}$ –	2	B1	
		Use the formula correctly at least once		M1	
		Obtain answer $x = 0.107$ Show that the equation has no other root but 0.107 [For the solution 0.107 with no relevant working, award B1 and is shown to be the only root.]	1 a further B1 if 0.1	A1 A1 107	[4]
3	State	he iterative formula correctly at least once final answer 2.78		M1 A1	
		sufficient iterations to at least 4 d.p. to justify its accuracy to 2 gen change in an appropriate function in (2.775, 2.785)	d.p., or show there	A1	[3]
	(ii) State	a suitable equation, e.g. $x = \frac{3}{4}x + \frac{15}{x^3}$		B1	
		that the exact value of α is $\sqrt[4]{60}$, or equivalent		B1	[2]

	Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	Раре	er
			GCE A/AS LEVEL – October/November 2009	9709	31	
4	Obt Equ	ain derivati ate derivat	quotient rule ive in any correct form ive to zero and obtain an equation of the form $a \sin 2x = b$, o	or a quadratic in tar		
		x, or $\cos^2 x$			M1*	1*)
		-	ect method for finding one angle , e.g. 0.365		M1(d A1	lep*)
	Obt [Ign	ain second ore answer	answer 1.206 and no others in the range (allow 1.21) rs outside the given range.] in degrees, 20.9° and 69.1°, as a misread.]		A1	[6]
5	(i)	EITHER:	Use double angle formulae correctly to express LHS in ter of 2θ	rms of trig functions	s M1	
			Use trig formulae correctly to express LHS in terms of sin	θ , converting at least	ast	
			two terms		M1	
			Obtain expression in any correct form in terms of $\sin \theta$		A1	
		OR:	Obtain given answer correctly Use double angle formulae correctly to express RHS in ter	rms of trig function		
			of 2θ Use trig formulae correctly to express RHS in terms of cos	AA and $\cos 2A$	M1 M1	
			Obtain expression in any correct form in terms of $\cos 4\theta$ a		A1	
			Obtain given answer correctly	nu 005 20	A1	[4]
	(ii)	State inde	finite integral $\frac{1}{4} \sin 4\theta - \frac{4}{2} \sin 2\theta + 3\theta$, or equivalent		B2	
		•	l if there is just one incorrect term) correctly, having attempted to use the identity		M1	
			swer $\frac{1}{32}(2\pi - \sqrt{3})$, or any simplified exact equivalent		A1	[4]
6	(i)	EITHER	State that the position vector of <i>M</i> is $2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, or equiva	lent	B1	
U	(1)	LIIIILK.	Carry out a correct method for finding the position vector		M1	
			Obtain answer $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, or equivalent		A1	
			Obtain vector equation of MN in any correct form,			
			e.g. $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} + 3\mathbf{k})$		A1	
		OR:	State that the position vector of M is $2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, or equiva		B1	
			Carry out a correct method for finding a direction vector for	or MN	M1	
			Obtain answer, e.g. $\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$, or equivalent		A1	
			Obtain vector equation of <i>MN</i> in any correct form, e.g. $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} + 3\mathbf{k})$		A1	٢/٦
			[SR: The use of $AN = AC/3$ can earn M1A0, but $AN = AC/3$	2 gets M0A0.]	AI	[4]
	(ii)	State equa	ation of <i>BC</i> in any correct form, e.g. $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \mu(\mathbf{i} - \mathbf{k})$	5j + 5k)	B1	
		Solve for		0	M1	
		Obtain co	rrect value of λ , or μ , e.g. $\lambda = 3$, or $\mu = 2$		A1	
		Obtain po	sition vector $5\mathbf{i} - 8\mathbf{j} + 7\mathbf{k}$		A1	[4]
7	(1)	Substituto	x = -2 + i in the equation and attempt expansion of $(-2 + i)$	3	M1	
/	(i)		$x^2 - 2 + 1$ in the equation and attempt expansion of $(-2 + 1)$ 1 correctly at least once and solve for k	,	M1	
		Obtain $k =$	•		A1	[3]
	(ii)	State that	the other complex root is $-2 - i$		B1	[1]
	. /		•			

Pa	ge 6			Pape	Paper	
		GCE A/AS LEVEL – October/November 2009	9709	31		
(iii)	Obtain mo			B1		
	Obtain arg	gument 153.4° or 2.68 radians		B1	[2]	
(iv)	Show poin	nt representing <i>u</i> in relatively correct position in an Argand	diagram	B1		
()	-	tical line through $z = 1$	un Brunn	B1		
		correct half-lines from <i>u</i> of gradient zero and 1		B1		
	Shade the	relevant region		B1	[4]	
		parts (i) and (ii) allow the following alternative method:				
		the other complex root is $-2 - i$		B1		
	-	dratic factor $x^2 + 4x + 5$	c 1 ·	B1		
		bic by 3-term quadratic, equate remainder to zero and solve	for k , or, using	N (1		
		adratic, factorise cubic and obtain k		M1		
	Obtain <i>k</i> =	= 20		A1]		
8 (i)	State or ir	nply partial fractions are of the form $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{3x+2}$	_	B1		
U (1)	State of fi	$x + 1 + (x + 1)^2 + 3x + 2$	2	51		
		elevant method to obtain a constant		M1		
		e of the values $A = 1, B = 2, C = -3$		A1		
		second value		A1		
	Obtain the	e third value		A1	[5]	
(ii)	Use corre	ct method to obtain the first two terms of the expansion of ($(x+1)^{-1}$ $(x+1)^{-2}$	$(3x+2)^{-1}$		
(11)	or $(1 + \frac{3}{2})$		x · 1) , (x · 1) , (M1		
	2			1011		
		rrect unsimplified expansion up to the term in x^2 of each particular term in x^2 of each particular terms of the term in x^2 of each particular terms of the term in x^2 of each particular terms of the term in x^2 of each particular terms of the term in x^2 of each particular terms of the term in x^2 of each particular terms of the terms of terms	rtial $A1\sqrt{+}A1\sqrt{-}$	L A 12		
	fraction	3 11 29 2	AIN + AIN			
		swer $\frac{3}{2} - \frac{11}{4}x + \frac{29}{8}x^2$, or equivalent		A1	[5]	
		c binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, are not sufficient for the		s on <i>A</i> , <i>B</i> ,	<i>C</i> .]	
	[The form $\frac{Dx+E}{(x+1)^2} + \frac{C}{3x+2}$, where $D = 1, E = 3, C = -3$, is acceptable. In part (i) give					
	B1M1A1	A1A1.				
	In part (ii) give M1A1 $\sqrt{A1}\sqrt{f}$ for the expansions, and, if $DE \neq 0$, M1 for multiplying out fully and A1					
		al answer.]				
		omitted from the form of fractions, give B0M1A0A0A0 in	(i); M1A1 $\sqrt{A1}\sqrt{in}$	(ii) , max		
	4/10]					
	-	omitted from the form of fractions, give B0M1A0A0A0 in	(i); $MIAIVAIV$ in	(ii), max		
	4/10]	se of an attempt to expand $(5x + 3)(x + 1)^{-2} (3x + 2)^{-1}$, give 1	$M1 \wedge 1 \wedge 1$ for the ex	nonciona	M1	
		Set of an attempt to expand $(3x + 3)(x + 1)^{-1}(3x + 2)^{-1}$, given blying out fully, and A1 for the final answer.]		parisions,	, I VI I	
		be of Maclaurin, giving M1A1 $\sqrt{A1}\sqrt{for}$ for differentiating and c	$btaining f(0) = \frac{3}{3}$	and		
			-			
	$f'(0) = -\frac{1}{2}$	$\frac{11}{4}$, A1 $\sqrt{1}$ for f "(0) = $\frac{29}{4}$, and A1 for the final answer (the f.t.	is on A, B, C if use	d).]		
9 (i)	State coor	rdinates (1, 0)		B1	[1]	
	**					
(ii)		ct quotient or product rule		M1		
		rivative in any correct form		A1		
		rivative to zero and solve for x = e^2 correctly		M1	۲ <i>۸</i> ٦	
	O = 0	- e contectiy		A1	[4]	

Pa	ge 7	Mark Scheme: Teachers' version	Syllabus	Pape	r
		GCE A/AS LEVEL – October/November 2009	9709	31	
(iii)	Attempt i	ntegration by parts reaching $a\sqrt{x}\ln x \pm a \int \sqrt{x} \frac{1}{x} dx$		M1*	
	Obtain 2-	$\sqrt{x}\ln x - 2\int \frac{1}{\sqrt{x}} dx$		A1	
	Integrate	and obtain $2\sqrt{x} \ln x - 4\sqrt{x}$		A1	
		s $x = 1$ and $x = 4$ correctly, having integrated twice e given answer		M1(de A1	ep*) [5]
10 (i)	State or in	mply $\frac{\mathrm{d}A}{\mathrm{d}t} = kV$		M1*	
	Obtain eq	uation in <i>r</i> and $\frac{dr}{dt}$, e.g. $8\pi r \frac{dr}{dt} = k \frac{4}{3} \pi r^3$		A1	
	Use $\frac{\mathrm{d}r}{\mathrm{d}t}$ =	= 2, $r = 5$ to evaluate k		M1(d	ep*)
	Obtain gi	ven answer		A1	[4]
(ii)	-	variables correctly and integrate both sides		M1	
	Obtain ter	$rms - \frac{1}{r}$ and 0.08 <i>t</i> , or equivalent		A1 +	A1
	Evaluate	a constant or use limits $t = 0$, $r = 5$ with a solution containing	g terms of the form		
	$\frac{a}{r}$ and bt			M1	
	Obtain so	lution $r = \frac{5}{(1-0.4t)}$, or equivalent		A1	[5]
(iii)		set of values $0 \le t \le 2.5$, or equivalent ≤ 2.5 and $0 \le t \le 2.5$ to earn B1.]		B1	[1]