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1 Solve the inequality |x| > |3x − 2|. [4]

2 (a) Use logarithms to solve the equation 3x = 8, giving your answer correct to 2 decimal places. [2]

(b) It is given that

ln � = ln(y + 2) − 2 ln y,

where y > 0. Express � in terms of y in a form not involving logarithms. [3]

3 The sequence of values given by the iterative formula

xn+1 = 3xn

4
+ 2

x3
n

,

with initial value x1 = 2, converges to α.

(i) Use this iteration to calculate α correct to 2 decimal places, showing the result of each iteration
to 4 decimal places. [3]

(ii) State an equation which is satisfied by α and hence find the exact value of α. [2]

4 The polynomial x3 − x2 + ax + b is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that
when p(x) is divided by (x − 2) the remainder is 12.

(i) Find the values of a and b. [5]

(ii) When a and b have these values, factorise p(x). [2]

5 (i) By differentiating
1

cos θ
, show that if y = sec θ then

dy
dθ

= sec θ tan θ . [3]

(ii) The parametric equations of a curve are

x = 1 + tan θ , y = sec θ ,

for −1
2
π < θ < 1

2
π. Show that

dy
dx

= sin θ . [3]

(iii) Find the coordinates of the point on the curve at which the gradient of the curve is 1
2
. [3]
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The diagram shows the part of the curve y = ln x
x

for 0 < x ≤ 4. The curve cuts the x-axis at A and its

maximum point is M.

(i) Write down the coordinates of A. [1]

(ii) Show that the x-coordinate of M is e, and write down the y-coordinate of M in terms of e. [5]

(iii) Use the trapezium rule with three intervals to estimate the value of

� 4

1

ln x
x

dx,

correct to 2 decimal places. [3]

(iv) State, with a reason, whether the trapezium rule gives an under-estimate or an over-estimate of
the true value of the integral in part (iii). [1]

7 (i) By expanding sin(2x + x) and using double-angle formulae, show that

sin 3x = 3 sin x − 4 sin3 x. [5]
(ii) Hence show that

� 1
3
π

0
sin3 x dx = 5

24
. [5]
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