

Rewarding Learning ADVANCED SUBSIDIARY (AS) General Certificate of Education 2016

Mathematics

Assessment Unit F1 assessing Module FP1: Further Pure Mathematics 1

[AMF11] MONDAY 27 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Let
$$\mathbf{A} = \begin{pmatrix} 5 & 4 \\ -3 & -2 \end{pmatrix}$$
 and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- (i) Verify that $A^2 = 3A 2I$ [4]
- (ii) Hence, or otherwise, express the matrix \mathbf{A}^{-1} in the form $\alpha \mathbf{A} + \beta \mathbf{I}$, where α , β are real numbers. [3]
- 2 A system of linear equations is given by

$$2x + (a - 1)y - z = 0$$

(a + 2)x + 3y = 0
$$2x + 3y + (a + 1)z = 0$$

Find the values of *a* for which there are solutions other than x = y = z = 0 [5]

3 (a) The matrices **M**, **N** are given by $\mathbf{M} = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$ and $\mathbf{N} = \begin{pmatrix} 0 & 4 \\ -2 & 1 \end{pmatrix}$

The matrix **S** represents the combined effect of the transformation represented by **M** followed by the transformation represented by **N**

A rectangle R is mapped to a new shape Q under the transformation represented by S

- (ii) If the area of R is 3 cm^2 , find the area of Q.
- (b) The matrix $\mathbf{P} = \begin{pmatrix} 3 & -1 \\ 0 & 1 \end{pmatrix}$ represents a linear transformation of the *x*-*y* plane.

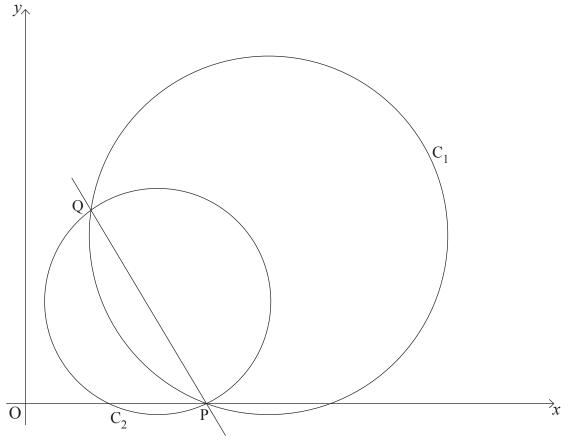
Find the equation of the straight line through the origin, each of whose points is invariant under this transformation. [5]

4 The matrix
$$\mathbf{M} = \begin{pmatrix} 11 & 2 & 8 \\ 2 & 2 & -10 \\ 8 & -10 & 5 \end{pmatrix}$$

- (i) Given that $\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ are eigenvectors of **M**, find the corresponding eigenvalues. [5]
- (ii) Given that the third eigenvalue is 9, find a corresponding unit eigenvector. [6]
- (iii) If U is a 3×3 matrix such that $\mathbf{U}^{\mathrm{T}} \mathbf{M} \mathbf{U} = \mathbf{D}$, where **D** is a diagonal matrix, write down a possible matrix **U** and the corresponding matrix **D** [3]

[3]

5 Two circles, C_1 and C_2 , as shown in **Fig. 1** below, have a common chord, PQ, whose equation is 4x + 3y = 36



(i) Given that the equation of circle C_1 is

$$x^2 + y^2 - 20x - 14y + 99 = 0$$

find the coordinates of P and Q.

- PQ is a diameter of the circle C_2
- (ii) Show that the equation of C_2 is

$$x^2 + y^2 - 12x - 8y + 27 = 0$$
[4]

[6]

(iii) Find the equation of the tangent to circle C_2 at the point Q. [4]

6 G is the group of symmetries of an equilateral triangle, under composition of transformations. Its group table is

	а	b	С	d	е	f
а	С	d	а	b	f	е
b	f	е	b	а	С	d
С	а	b	С	d	е	f
d	е	f	d	С	а	b
е	d	С	е	f	b	а
f	b	а	a b c d e f	е	d	С

- (i) State the identity element.
- (ii) State whether the element *a* represents a reflection or a rotation. Justify your answer. [1]
- (iii) Find a subgroup of order 3

The permutations

$$I = \begin{pmatrix} x & y & z \\ x & y & z \end{pmatrix} \qquad p = \begin{pmatrix} x & y & z \\ x & z & y \end{pmatrix} \qquad q = \begin{pmatrix} x & y & z \\ y & x & z \end{pmatrix}$$
$$r = \begin{pmatrix} x & y & z \\ z & y & x \end{pmatrix} \qquad s = \begin{pmatrix} x & y & z \\ z & x & y \end{pmatrix} \qquad t = \begin{pmatrix} x & y & z \\ y & z & x \end{pmatrix}$$

form a group H under composition.

(iv) Copy and complete the group table for H.

	Ι	р	q	r	S	t
Ι	Ι	р	q	r	S	t
р	р	Ι	t	S	r	q
q	q	S	Ι	t	р	r
r	r	t	S	Ι	q	р
S	S	q	r			
t	t	r	р			

- (v) Find the period of the element *s*.
- (vi) State one element which is self-inverse.
- (vii)Show that groups G and H are isomorphic by stating clearly one possible isomorphism.

[2]

[1]

[1]

[1]

[2]

5

[Turn over

- 7 The complex numbers z_1 and z_2 are given by $z_1 = \sqrt{2} + \sqrt{2} i$ and $z_2 = \sqrt{3} i$
 - (i) Find the modulus and argument of each of z_1 and z_2 [6]
 - (ii) Plot the points representing each of z_1 , z_2 and $z_1 + z_2$ on an Argand diagram. [3]
 - (iii) Hence find the exact value of $\tan \frac{\pi}{24}$ [5]

THIS IS THE END OF THE QUESTION PAPER