

Rewarding Learning ADVANCED General Certificate of Education 2015

Mathematics

Assessment Unit M2

assessing Module M2: Mechanics 2

[AMM21]

MONDAY 22 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them. Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 A particle P moves so that at time *t* seconds, its displacement **s** metres from a fixed point O is given by

 $\mathbf{s} = (t^2 + 2)\mathbf{i} + (t^3 - 1)\mathbf{j} + (t^2 + 2t)\mathbf{k}$

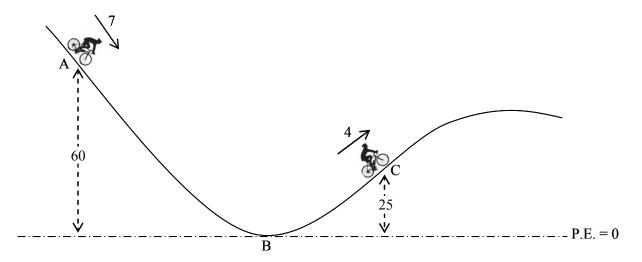
- (i) Show that P starts its motion on the i–j plane.
- (ii) Find the speed of P at t = 2

(iii) Find t when the acceleration of the particle is $(2\mathbf{i} + 8\mathbf{j} + 2\mathbf{k}) \text{ m s}^{-2}$ [3]

- 2 A particle, P, of mass 3 kg is acted upon by two constant forces F_1 and F_2
 - \mathbf{F}_1 has magnitude 18 N and acts in the direction of the vector $\begin{pmatrix} 4 \\ -4 \\ -7 \end{pmatrix}$ \mathbf{F}_2 has magnitude 6 N and acts in the direction of the vector $\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$
 - (i) Find, in vector form, the resultant force acting on P.
 - (ii) Hence, show that the acceleration of P is $\begin{pmatrix} 4 \\ -2 \\ -6 \end{pmatrix}$ m s⁻² [2] At time t = 0 seconds, P is moving with velocity $\begin{pmatrix} -1 \\ 3 \\ 6 \end{pmatrix}$ m s⁻¹ (iii) Find the velocity of P at t = 1 [2]
 - (iv) Show that at t = 1, the particle is moving at right angles to its initial direction. [2]

[2]

[4]


[2]

[4]

3 Fig. 1 below shows a cyclist, Sharon, moving along a cycle track ABC. B is the lowest point on the track.

A is 60m vertically above the horizontal through B.

C is 25m vertically above the horizontal through B.

Sharon and her cycle have a combined mass of 75 kg. The total distance she travels along the track from A to C is 2100 m. The total resistance to her motion is constant and is 14 N. At A, Sharon is moving downhill at 7 m s^{-1} At C, Sharon is moving uphill at 4 m s^{-1} Take the potential energy at B to be zero.

(i)	Find the change in the kinetic	c energy of the cyclist between A and C.	[2]
(-)			[-]

- (ii) Find the work done against resistance between A and C. [2]
- (iii) Find the work done by the cyclist between A and C. [5]

4 In this question take $g = 10 \text{ m s}^{-2}$

A van of mass 2 tonnes has an engine which can produce a maximum power of 48 kW. The total resistance to the motion of the van can be modelled by (a + bv) newtons, where *a* and *b* are constants and *v* is the speed of the van in ms⁻¹

The maximum speed of the van on a straight horizontal road is $50\,\mathrm{m\,s^{-1}}$

(i) Find an equation connecting *a* and *b*.

The maximum speed of the van up a hill inclined at $\sin^{-1}\left(\frac{1}{25}\right)$ to the horizontal is $30 \,\mathrm{m\,s^{-1}}$

- (ii) Find a second equation connecting *a* and *b* and hence show a = 560 and b = 8 [5]
- (iii) Find the acceleration of the van when it is travelling at 40 m s⁻¹ on a straight horizontal road.
 [3]

5 A plane is travelling horizontally at $49 \,\mathrm{m \, s^{-1}}$ at a height of 100 m vertically above the ground, as shown in **Fig. 2** below.

The plane drops a food package to people on the ground.

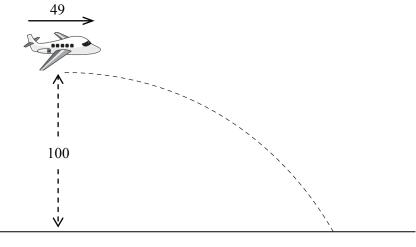


Fig. 2

Model the package as a particle.

- (i) Find the horizontal distance travelled by the package just before it hits the ground. [4]
- (ii) Find the speed at which the package hits the ground. [5]
- (iii) State one assumption you have made in answering this question. [1]

- 6 A ship of mass *M* kg is sailing in a straight line between two ports. When the speed of the ship is $v \text{ m s}^{-1}$, the total resistance to its motion can be modelled by $(v^2 + k^2)$ newtons, where *k* is a constant. The engines of the ship exert a constant tractive force of $5k^2$ newtons.
 - (i) Show that the maximum speed of the ship is $2k \text{ m s}^{-1}$ [2]

As the ship passes a point P at its maximum speed, the engines are suddenly put into maximum reverse thrust of $5k^2$ N.

The total resistance to motion remains as before.

(ii) Show that the motion of the ship can be modelled by the differential equation

$$v^2 + 6k^2 = -Mv \,\frac{\mathrm{d}v}{\mathrm{d}x}$$

where x is the distance, in metres, after passing P.

(iii) Show that the ship will momentarily stop when $x = \frac{M}{2} \ln \frac{5}{3}$ [8]

[3]

7 Fig. 3 below shows a bead B, of mass m kg, fastened to a point on a light inextensible string of length 7x metres.

The ends of the string are fastened to fixed points A and C, A being vertically above C. $\angle ABC = 90^{\circ}$, AB = 4x and BC = 3x.

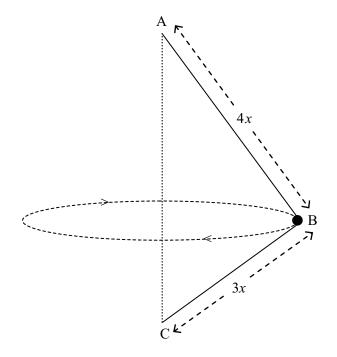


Fig. 3

B travels in a horizontal circle with constant angular velocity ω rad s⁻¹, where $\omega = \sqrt{\frac{5g}{6x}}$ The string is taut.

(i) Draw a diagram showing the external forces acting on B. [1]

(ii) Show that B travels in a circular path of radius $\frac{12x}{5}$ metres. [2]

(iii) Find, in terms of m and g, the tensions in the two parts of the string. [9]

THIS IS THE END OF THE QUESTION PAPER