Rewarding Learning

ADVANCED
General Certificate of Education 2014

Mathematics

Assessment Unit F2
 assessing
 Module FP2: Further Pure Mathematics 2
 [AMF21]
 THURSDAY 12 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Given that

$$
\mathrm{f}(x)=\ln (1+\sin x)
$$

find the Maclaurin expansion for $\mathrm{f}(x)$ up to and including the term in x^{2}

2 Find, in radians, the general solution of the equation

$$
\begin{equation*}
\sin 3 \theta=\sin \theta \tag{6}
\end{equation*}
$$

3 A geometric series is given by

$$
\mathrm{e}^{3 x}+3 \mathrm{e}^{x}+9 \mathrm{e}^{-x}+\ldots \quad x>0
$$

(i) Find an expression for the nth term of the series.
(ii) Find the range of values of x for which the series has a sum to infinity.
(iii) Find the sum to infinity when $x=\ln 2$

4 (i) Given that

$$
x y+3 y-x=0
$$

show that

$$
\begin{equation*}
(x+3) \frac{\mathrm{d} y}{\mathrm{~d} x}+y=1 \tag{2}
\end{equation*}
$$

(ii) Hence, using mathematical induction, prove that for $n \geqslant 2$

$$
\begin{equation*}
(x+3) \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}+n \frac{\mathrm{~d}^{n-1} y}{\mathrm{~d} x^{n-1}}=0 \tag{5}
\end{equation*}
$$

5 (i) Express in partial fractions

$$
\begin{equation*}
\mathrm{f}(x)=\frac{2}{(x-1)^{2}\left(x^{2}+1\right)} \tag{6}
\end{equation*}
$$

(ii) Hence find the exact value of

$$
\begin{equation*}
\int_{2}^{3} \frac{2}{(x-1)^{2}\left(x^{2}+1\right)} \mathrm{d} x \tag{5}
\end{equation*}
$$

6 (i) Show that

$$
\left(Z^{n}-\mathrm{e}^{\mathrm{i} \theta}\right)\left(Z^{n}-\mathrm{e}^{-\mathrm{i} \theta}\right) \equiv Z^{2 n}-2 Z^{n} \cos \theta+1
$$

where Z is a complex number.
(ii) Hence or otherwise find in $(\cos \theta+\mathrm{i} \sin \theta)$ form the roots of the equation

$$
\begin{equation*}
Z^{4}-Z^{2} \sqrt{2}+1=0 \tag{5}
\end{equation*}
$$

7 (i) Show that an equation of the normal to the parabola $y^{2}=4 a x$ at the point $\mathrm{P}\left(a t^{2}, 2 a t\right)$ is

$$
\begin{equation*}
y+t x=2 a t+a t^{3} \tag{4}
\end{equation*}
$$

The normal at P meets the curve again at the point $\mathrm{Q}\left(a s^{2}, 2 a s\right)$.
(ii) Show that if $t \neq 0$

$$
\begin{equation*}
s=-\left(t+\frac{2}{t}\right) \tag{3}
\end{equation*}
$$

(iii) Using (ii) show that

$$
\begin{equation*}
\mathrm{PQ}^{2}=\frac{16 a^{2}\left(t^{2}+1\right)^{3}}{t^{4}} \tag{4}
\end{equation*}
$$

8 A particle P moves in a straight line so that its displacement x centimetres from a fixed point at time t seconds is given by the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 x=\lambda \sin 2 t
$$

where λ is a constant.
(i) Given that $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\lambda}{4}$ when $t=0$, find x in terms of t and λ.
(ii) As t becomes large describe what happens to the solution found in part (i).

