Rewarding Learning

ADVANCED SUBSIDIARY (AS)

General Certificate of Education
January 2014

Mathematics

Assessment Unit F1
 assessing

Module FP1: Further Pure Mathematics 1

[AMF11]

FRIDAY 10 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Let $\mathbf{A}=\left(\begin{array}{lll}1 & x & 2 \\ 2 & 3 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}0 & 6 \\ 1 & x \\ -1 & -3\end{array}\right)$
(i) Calculate the matrix product $\mathbf{A B}$, leaving your answer in terms of x.
(ii) Given that $\mathbf{A B}$ has no inverse, find the value of x.

2 (a) Write down the 2×2 matrix \mathbf{M} which represents a reflection in the line

$$
\begin{equation*}
y=\frac{1}{\sqrt{3}} x \tag{3}
\end{equation*}
$$

(b) The matrix $\mathbf{N}=\left(\begin{array}{cc}1 & 2 \\ 4 & -1\end{array}\right)$ represents a linear transformation of the $x-y$ plane.

Find the equations of the straight lines through the origin which are invariant under the transformation given by \mathbf{N}

3 (a) The set of numbers $\{1,3,7, a\}$, where a is a positive integer, forms a group under multiplication modulo 8
Find the value of a.
(b) (i) Copy and complete the following group table for multiplication modulo 18

\times_{18}	1	5	7	11	13	17
1	1	5	7	11	13	17
5	5	7	17	1	11	13
7	7	17	13	5	1	11
11	11	1	5			
13	13	11	1			
17	17	13	11			

(ii) Find an element which generates this group, briefly justifying your answer.
(iii) Write down a subgroup of this group of order 2
(iv) Write down a subgroup of this group of order 3

4 The matrix \mathbf{P} is given by

$$
\mathbf{P}=\left(\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

(i) Show that the eigenvalues of \mathbf{P} are 2, 3 and 6
(ii) For the eigenvalue 6, find a corresponding eigenvector.
(iii) Verify that $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ are eigenvectors of \mathbf{P}
(iv) If $\mathbf{U}^{\mathbf{T}} \mathbf{P U}=\mathbf{D}$, where \mathbf{D} is a diagonal matrix, write down a possible matrix \mathbf{U}

5 Two circles have equations

$$
\begin{array}{r}
x^{2}+y^{2}+6 x-10 y+9=0 \\
x^{2}+y^{2}-2 x-6 y+1=0 \tag{4}
\end{array}
$$

(i) Find the centre and radius of each circle.
(ii) Determine whether or not the circles intersect. Clearly justify your answer.
(iii) Find the point of intersection of the common tangents to the two circles.

6 (a) The complex number z is defined as $z=\frac{3+\mathrm{i}}{1-\mathrm{i}}$
Calculate $z+\frac{1}{z}$, leaving your answer in the form $a+b i$, where a and b are rational numbers.
(b) Given that $(p+q \mathrm{i})^{2}=17-6 \sqrt{2} \mathrm{i}$, find the values of p and the corresponding values of q.
(c) (i) Sketch on an Argand diagram the locus of those points u which satisfy

$$
\begin{equation*}
|u-(1-i)|=2 \tag{3}
\end{equation*}
$$

(ii) On the same Argand diagram sketch the locus of those points v which satisfy

$$
\begin{equation*}
|v-(4+5 \mathrm{i})|=1 \tag{1}
\end{equation*}
$$

(iii) Find the maximum value of $|u-v|$ where u and v are the complex numbers which satisfy the equations in (i) and (ii) respectively.

A solution by scale drawing will not be accepted.

THIS IS THE END OF THE QUESTION PAPER

