Rewarding Learning

ADVANCED
General Certificate of Education
January 2014

Mathematics

Assessment Unit M2
assessing
Module M2: Mechanics 2
[AMM21]

TUESDAY 28 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated. You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Answers should include diagrams where appropriate and marks may be awarded for them. Take $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless specified otherwise.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 At time $t=0$ seconds, a particle of mass 2 kg is at rest at the origin.
A constant force \mathbf{F} of magnitude 27 N acts on the particle in the direction of the vector $\mathbf{d}=4 \mathbf{i}+7 \mathbf{j}-4 \mathbf{k}$
(i) Find the magnitude of \mathbf{d}
(ii) Find \mathbf{F}
(iii) Find the speed of the particle when $t=4$

2 A particle moves in a plane so that its position vector \mathbf{r} metres at time t seconds $(t \geqslant 0)$ is given by

$$
\mathbf{r}=\binom{4 t^{2}-6 t+1}{3 t^{2}+4}
$$

(i) Find an expression for the velocity of the particle at any time t.
(ii) Find t when the particle is moving parallel to the vector $\binom{1}{2}$
(iii) Show that the acceleration of the particle is constant, and find its magnitude.

3 A car of mass 1800 kg is travelling along a straight horizontal road.
When the car is travelling at a speed of $v \mathrm{~m} \mathrm{~s}^{-1}$, it experiences a resistance of $42 v$ newtons.
(i) Find the power produced by the car's engine when the car is travelling at its maximum speed of $45 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) With the engine working at the same rate, find the acceleration of the car when its speed is $35 \mathrm{~m} \mathrm{~s}^{-1}$

4 Fig. 1 below shows the cross section of a baggage chute composed of three sections, $A B, B C$ and $C D$.
AB is vertical and of length x metres.
BC is a quarter circle of radius $2 x$ metres.
CD is horizontal and of length d metres.
$A B$ and $B C$ are smooth.
$C D$ is rough.

Fig. 1
A bag of mass $m \mathrm{~kg}$ is released from rest at the point A and slides down the chute.
Assume gravitational potential energy to be zero at C.
(i) Find, in terms of g, m and x, an expression for the potential energy of the bag at A.

The coefficient of friction between the bag and CD is μ.
The bag comes to rest at the point D.
(ii) Using the work-energy principle, or otherwise, find d in terms of μ and x.
(iii) Find, in terms of g and x, the speed $v \mathrm{~m} \mathrm{~s}^{-1}$ of the bag when it is halfway along CD.

5 A racing car of mass 1200 kg moves along a straight horizontal road.
The engine of the car develops a constant power of 80 kW .
The constant resistances to the motion of the car total 1600 N .
(i) Show that the acceleration of the car can be modelled by

$$
\frac{200-4 v}{3 v}
$$

where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the car at time t seconds.

At $t=0$ seconds, the car is travelling at a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) Find the time taken for the car to accelerate from $20 \mathrm{~m} \mathrm{~s}^{-1}$ to $30 \mathrm{~m} \mathrm{~s}^{-1}$

6 At time $t=0$ seconds, a missile is fired from a point O on horizontal ground with a velocity of $u \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of θ above the horizontal.
When the missile is at a point P which is 200 m vertically above the ground, it has a velocity of $50 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 30° above the horizontal, as shown in Fig. 2 below.

Fig. 2
(i) Find u and θ.
(ii) Hence, find the value of t at which the missile is 200 m vertically above the ground for the second time.
(iii) State one modelling assumption you have made when answering this question.

One end of a light inextensible string of length 0.5 m is attached to the vertex, V , of a smooth right circular cone.
A particle P of mass 2 kg is attached to the other end.
P rotates as a conical pendulum in a horizontal circle of diameter 0.6 m on the smooth outer surface of the cone, as shown in Fig. 3 below.
The string remains parallel to the surface of the cone and P remains in contact with the cone at all times.

Fig. 3
(i) Draw a diagram showing the external forces acting on P .
P travels with an angular velocity of $3 \mathrm{rad} \mathrm{s}^{-1}$
(ii) Find the tension in the string.

THIS IS THE END OF THE QUESTION PAPER

