Rewarding Learning

ADVANCED
General Certificate of Education
January 2014

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

MONDAY 27 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (i) Simplify the expression

$$
\begin{equation*}
(\sqrt{r}+\sqrt{r-1})(\sqrt{r}-\sqrt{r-1}) \tag{1}
\end{equation*}
$$

(ii) Hence show that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{\sqrt{r}+\sqrt{r-1}}=\sqrt{n} \tag{3}
\end{equation*}
$$

2 Find, in radians, the general solution of the equation

$$
\begin{equation*}
3 \tan ^{2} \theta=2 \sin \theta \tag{9}
\end{equation*}
$$

3 (a) A root of the equation

$$
z^{4}-6 z^{3}+23 z^{2}-34 z+26=0
$$

is $1+\mathrm{i}$
(i) State with a reason one other complex root.
(ii) Find the remaining roots.
(b) Given that n is a positive integer, show that

$$
\begin{equation*}
(1+i)^{4 n}-(1-i)^{4 n}=0 \tag{5}
\end{equation*}
$$

4 Let $y=\tan x$
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+y^{2}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y\left(1+y^{2}\right)$
(ii) Find, in terms of y, an expression for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$
(iii) Hence or otherwise find the Maclaurin series for $\tan x$ up to and including the term in x^{3}
(iv) Using this approximation for $\tan x$ and other small angle approximations, find

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\frac{x \sin ^{2} x}{\tan x-x \cos x}\right) \tag{3}
\end{equation*}
$$

5 Use mathematical induction to prove that if $n \geqslant 1$ and $\sin x \neq 0$

$$
\begin{equation*}
\cos x+\cos 3 x+\cos 5 x+\ldots+\cos (2 n-1) x \equiv \frac{\sin 2 n x}{2 \sin x} \tag{9}
\end{equation*}
$$

6 The extension x centimetres of a spiral spring at time t seconds is given by the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+n^{2} x=\cos \omega t
$$

where n and ω are constants and $\omega \neq n$
Given that when $t=0, x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=V$, express x as a function of t.

7 (i) Find the eccentricity of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \tag{2}
\end{equation*}
$$

(ii) State the coordinates of the foci and the equations of the directrices.
(iii) Show that an equation for the tangent to this ellipse at the point $\mathrm{P}(3 \cos \theta, 2 \sin \theta)$ is

$$
\begin{equation*}
\frac{x \cos \theta}{3}+\frac{y \sin \theta}{2}=1 \tag{4}
\end{equation*}
$$

A line perpendicular to the tangent at P is drawn from the origin and intersects the tangent at Q .
(iv) Find, in terms of θ, the coordinates of Q .
(v) Verify that as θ varies Q lies on the curve

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}=9 x^{2}+4 y^{2} \tag{4}
\end{equation*}
$$

