Rewarding Learning

ADVANCED
General Certificate of Education
January 2013

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

MONDAY 28 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find in terms of π the general solution of the equation

$$
\begin{equation*}
1+\frac{\cos 2 \theta}{\cos \theta}=0 \tag{6}
\end{equation*}
$$

2 (i) Show that

$$
\begin{equation*}
\sum_{r=1}^{n} r(r+2)=\frac{n}{6}(n+1)(2 n+7) \tag{4}
\end{equation*}
$$

(ii) Using this result, find the sum

$$
3 \ln 5+4 \ln 5^{2}+5 \ln 5^{3}+\ldots+12 \ln 5^{10}
$$

leaving your answer in terms of $\ln 5$

3 (i) Given that

$$
\mathrm{f}(x)=\frac{5 x^{2}+12 x+14}{(x+2)^{2}\left(x^{2}+1\right)} \quad x \neq-2
$$

express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence or otherwise show that $\mathrm{f}(x)>0$

4 (a) Using small angle approximations, show that as $x \rightarrow 0$

$$
\begin{equation*}
\frac{1-\cos 4 x+x \sin 2 x}{x^{2}} \rightarrow 10 \tag{3}
\end{equation*}
$$

(b) Using Maclaurin's theorem, find a series expansion for $\cos 4 x$ up to and including the term in x^{4}

5 Using the principle of mathematical induction, prove that if n is a positive integer then

$$
\begin{equation*}
3^{2 n}+11 \tag{7}
\end{equation*}
$$

is divisible by 4

6 A particle moves so that its displacement x metres from a fixed point O at time t seconds is given by the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=20 \cos t
$$

Find the general solution of this equation.

7 (i) Show that the equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\mathrm{P}(a \cos \theta, b \sin \theta)$ is

$$
\begin{equation*}
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \tag{5}
\end{equation*}
$$

The equation of the tangent to this ellipse at $\mathrm{Q}(-a \sin \theta, b \cos \theta)$ is

$$
\frac{y \cos \theta}{b}-\frac{x \sin \theta}{a}=1
$$

The tangents at P and Q intersect at the point R .
(ii) Find in terms of θ the coordinates of R .
(iii) Show that as θ varies the locus of R is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 \tag{2}
\end{equation*}
$$

8 (i) Using De Moivre's theorem, show that

$$
\begin{equation*}
z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta \tag{3}
\end{equation*}
$$

where $z=\cos \theta+i \sin \theta$
(ii) Using (i) with $n=1$ or otherwise, show that

$$
\begin{equation*}
16 \sin ^{5} \theta=\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta \tag{5}
\end{equation*}
$$

(iii) Hence evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{3}} \sin ^{5} \theta \mathrm{~d} \theta \tag{5}
\end{equation*}
$$

