Rewarding Learning

ADVANCED
General Certificate of Education
2012

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4
 [AMC41]

FRIDAY 1 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (a) For each relation below state if it is a one-one function, a many-one function or a mapping.
(i) \quad : $x \rightarrow \pm \sqrt{ } x \quad x \in \mathbb{R} \quad x \geqslant 0$
(ii)
$\mathrm{b}: x \rightarrow \frac{1}{x} \quad x \in \mathbb{R} \quad x \neq 0$
(iii)

$$
\begin{equation*}
\mathrm{c}: x \rightarrow x^{2} \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

(b) The function f is defined by

$$
\mathrm{f}(x)=x^{2}-3 \quad x \in \mathbb{R}
$$

and the function g is defined by

$$
\mathrm{g}(x)=2 x+1 \quad x \in \mathbb{R}
$$

(i) Find the composite function $\operatorname{gf}(x)$, stating its domain.
(ii) Find the values of x such that $g f(x)=3 x$

2 (i) Sketch the graph of

$$
\begin{equation*}
y=4-x^{2} \tag{2}
\end{equation*}
$$

clearly showing where it crosses the x-axis.

A paperweight can be modelled as the solid formed when the area bounded by the curve

$$
y=4-x^{2}
$$

and the x-axis and the y-axis is rotated through 360° about the x-axis.
(ii) Find the volume of the paperweight.

3 During a science experiment, students create two waves in a ripple tank.
The first wave can be modelled by the equation

$$
h_{1}=6 \cos t \quad 0 \leqslant t \leqslant 2 \pi
$$

The second wave can be modelled by the equation

$$
h_{2}=5 \sin t \quad 0 \leqslant t \leqslant 2 \pi
$$

where h_{1} and h_{2} are the heights of the waves, measured in millimetres, at any time t seconds from the start of the experiment.
The two waves join together.
(i) Express the height $h_{1}+h_{2}$ of the resultant wave in the form

$$
\begin{equation*}
r \cos (t-\alpha) \quad 0 \leqslant \alpha \leqslant \frac{\pi}{2} \quad r \in \mathbb{R} \tag{4}
\end{equation*}
$$

(ii) Hence find the times when the resultant wave has a height of 3 mm .

4 (i) Given that

$$
x^{2}+6 x y+y^{2}+32=0
$$

use implicit differentiation to show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-(x+3 y)}{3 x+y} \tag{5}
\end{equation*}
$$

(ii) Hence find the coordinates of the stationary points on the curve

$$
\begin{equation*}
x^{2}+6 x y+y^{2}+32=0 \tag{6}
\end{equation*}
$$

5 Solve the differential equation

$$
\begin{equation*}
\cos ^{2} 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y \tag{8}
\end{equation*}
$$

given that $y=\mathrm{e}^{3}$ when $x=\frac{\pi}{16}$

6 (i) Find the vector equation of the line l through the points $(2,4,3)$ and $(1,2,3)$.

The point P lies on the line l.
O is the point $(0,0,0)$.
(ii) Hence, using (i), write down the position vector $\overrightarrow{\mathrm{OP}}$

OP is perpendicular to the line l.
(iii) Find the coordinates of the point P .

7 Find the exact value of

$$
\begin{equation*}
\int_{1}^{3} \ln x \mathrm{~d} x \tag{7}
\end{equation*}
$$

8 (i) Prove the identity

$$
\begin{equation*}
\tan 3 \theta \equiv \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \tag{7}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\begin{equation*}
\tan 3 \theta=\tan \theta \quad 0^{\circ} \leqslant \theta \leqslant 360^{\circ} \tag{5}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

