Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2012

Mathematics

Assessment Unit F1
 assessing

Module FP1: Further Pure Mathematics 1
[AMF11]

MONDAY 25 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 A system of equations is given by

$$
\begin{aligned}
& \lambda x+5 y=11 \\
& 4 x+5 \lambda y=\mu
\end{aligned}
$$

(i) Find the values of λ for which the system of equations does not have a unique solution.
(ii) If $\lambda=2$, find the value of μ for which there are infinitely many solutions.

2 The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 3 & 1 \\
1 & 0 & 4
\end{array}\right)
$$

(i) Find the eigenvalues of \mathbf{M}.
(ii) For the eigenvalue 2, find a corresponding unit eigenvector.

3 (i) Define clearly the symmetries of the non-square rhombus ABCD as shown in Fig. 1 below.

Fig. 1
(ii) Hence construct the table for the symmetry group G of this shape.

The set $\{1,4,11,14\}$ forms a group H under multiplication modulo 15
(iii) Draw up a table for the group H.
(iv) Determine whether groups G and H are isomorphic. Justify your answer.

4 (a) Describe fully the transformation represented by the matrix

$$
\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

(b) Find the image of the line $y=3 x-2$ under the transformation represented by the matrix

$$
\left(\begin{array}{cc}
1 & 2 \\
4 & -1
\end{array}\right)
$$

5 The circles C_{1} and C_{2} are given by the following equations.

$$
\begin{array}{ll}
\mathrm{C}_{1}: & x^{2}+y^{2}+2 x-4=0 \\
\mathrm{C}_{2}: & x^{2}+y^{2}+8 x+2 y-8=0
\end{array}
$$

(i) Find the points of intersection of the circles C_{1} and C_{2}
(ii) The line $y=2 x+k$ is a tangent to the circle C_{1} Find the possible values of k.

6 (a) The complex numbers z_{1} and z_{2} are given as

$$
z_{1}=3+4 \mathrm{i} \quad \text { and } \quad z_{2}=1+p \mathrm{i}
$$

where p is a real number.
Given that the value of $z_{1}+2 z_{2}$ is real, find the value of p.
(b) Simplify the number

$$
\begin{equation*}
\frac{5-2 i}{3+i} \tag{4}
\end{equation*}
$$

giving the answer in the form $a+b \mathrm{i}$, where a and b are real numbers.
(c) (i) Sketch on an Argand diagram the locus of those points z which satisfy

$$
\begin{equation*}
|z-3|=|z-(7+2 \mathrm{i})| \tag{3}
\end{equation*}
$$

(ii) On the same diagram, sketch the locus of those points w which satisfy

$$
\begin{equation*}
\arg \{w-(3+2 \mathrm{i})\}=\frac{\pi}{4} \tag{3}
\end{equation*}
$$

(iii) Find the point of intersection of these loci.

