Rewarding Learning

ADVANCED
General Certificate of Education
2012

Mathematics

Assessment Unit F3
 assessing

Module FP3: Further Pure Mathematics 3
[AMF31]

THURSDAY 24 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find the exact solutions of

$$
\begin{equation*}
8 \cosh x+4 \sinh x=7 \tag{7}
\end{equation*}
$$

2 Given that

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i}+\mathbf{j}-2 \mathbf{k} \\
& \mathbf{b}=p \mathbf{i}+q \mathbf{j}+r \mathbf{k}
\end{aligned}
$$

and that

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=7 \mathbf{i}+\mathbf{j}+r \mathbf{k} \tag{7}
\end{equation*}
$$

find the values of the scalar constants p, q and r.

3
(a) Let

$$
\mathrm{f}(x)=\cos ^{-1}(2 x)+\cos ^{-1}(-2 x) \quad-\frac{1}{2}<x<\frac{1}{2}
$$

(i) Find $\mathrm{f}^{\prime}(x)$.
(ii) What can be deduced from (i) about $\mathrm{f}(x)$ in the interval $-\frac{1}{2}<x<\frac{1}{2}$?
(iii) Evaluate $\mathrm{f}(x)$ in the interval $-\frac{1}{2}<x<\frac{1}{2}$
(b) Given that

$$
\sinh x=\tan t \quad 0<t<\frac{\pi}{2}
$$

show that

$$
\begin{equation*}
\tanh x=\sin t \tag{4}
\end{equation*}
$$

4 (i) Show that

$$
\begin{equation*}
\frac{\sec ^{2} x}{1+25 \tan ^{2} x} \equiv \frac{1}{\cos ^{2} x+25 \sin ^{2} x} \tag{2}
\end{equation*}
$$

(ii) Using the substitution $u=\tan x$, or otherwise, evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \frac{\mathrm{~d} x}{\cos ^{2} x+25 \sin ^{2} x} \tag{7}
\end{equation*}
$$

5 (i) Given that $|x|<1$ prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\tanh ^{-1} x\right]=\frac{1}{1-x^{2}} \tag{4}
\end{equation*}
$$

(ii) Using the above result show that

$$
\begin{equation*}
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \tag{5}
\end{equation*}
$$

(iii) Show that

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \tanh ^{-1} x \mathrm{~d} x=\frac{3}{4} \ln 3-\ln 2 \tag{6}
\end{equation*}
$$

6 Referred to a fixed origin O the lines L_{1} and L_{2} have equations

$$
\begin{array}{lr}
\mathrm{L}_{1} & \{\mathbf{r}-(2 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k})\} \times(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k})=\mathbf{0} \\
\mathrm{L}_{2} & \{\mathbf{r}-(6 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k})\} \times(\mathbf{i}-2 \mathbf{j}+\mathbf{k})=\mathbf{0}
\end{array}
$$

(i) Show that the two lines intersect and find the position vector of the point of intersection.
(ii) Find a vector that is perpendicular to both lines.
(iii) Find in Cartesian form the equation of the plane containing L_{1} and L_{2}

7 (i) Given that

$$
I_{n}=\int \cosh ^{n} x \mathrm{~d} x
$$

show that for $n \geqslant 2$

$$
\begin{equation*}
n I_{n}=\cosh ^{n-1} x \sinh x+(n-1) I_{n-2} \tag{7}
\end{equation*}
$$

(ii) The shaded region in Fig. 1 below is bounded by the curve $y=\cosh ^{3} x$, the line $x=1$ and the x - and y-axes.

Fig. 1

Show that the area shaded is

$$
\frac{\mathrm{e}^{6}+9 \mathrm{e}^{4}-9 \mathrm{e}^{2}-1}{24 \mathrm{e}^{3}}
$$

THIS IS THE END OF THE QUESTION PAPER

