Rewarding Learning

ADVANCED
General Certificate of Education
January 2012

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

WEDNESDAY 1 FEBRUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

7131

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (i) Show that the sum of the series

$$
\frac{5}{1 \times 2 \times 3}+\frac{8}{2 \times 3 \times 4}+\frac{11}{3 \times 4 \times 5}+\cdots+\frac{3 n+2}{n(n+1)(n+2)}
$$

is given by

$$
\begin{equation*}
2-\frac{1}{n+1}-\frac{2}{n+2} \tag{8}
\end{equation*}
$$

(ii) Hence find the sum of the series

$$
\begin{equation*}
\frac{5}{1 \times 2 \times 3}+\frac{8}{2 \times 3 \times 4}+\frac{11}{3 \times 4 \times 5}+\cdots \tag{1}
\end{equation*}
$$

2 Find the first 2 non-zero terms of the Maclaurin series for $\tan ^{-1}(x)$.

3 (a) Find the equation of an ellipse with focus $\mathrm{F}(4,0)$ and associated directrix $x=6.25$
(b) Find the equation of the parabola with focus $\mathrm{F}(4,1)$ and directrix $x=-1$

4 Find the general solution of the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=3 \cos 2 x \tag{12}
\end{equation*}
$$

5 (i) Using partial fractions show that

$$
\begin{equation*}
\frac{3}{\left(1+2 x^{2}\right)(1-2 x)} \equiv \frac{2 x+1}{1+2 x^{2}}+\frac{2}{1-2 x} \tag{6}
\end{equation*}
$$

(ii) Hence find a series expansion for

$$
\begin{equation*}
\frac{3}{\left(1+2 x^{2}\right)(1-2 x)} \tag{5}
\end{equation*}
$$

up to and including the term in x^{4}
(iii) State the range of values of x for which the expansion is valid.

6 Use the principle of mathematical induction to show that for all non-negative integers n

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left[\mathrm{e}^{x} \cos \sqrt{3} x\right]=2^{n} \mathrm{e}^{x} \cos \left(\sqrt{3} x+\frac{n \pi}{3}\right) \tag{8}
\end{equation*}
$$

$\left[\right.$ Note that $\left.\frac{\mathrm{d}^{0}}{\mathrm{~d} x^{0}} \mathrm{f}(x)=\mathrm{f}(x)\right]$

7 (i) If $Z=\mathrm{e}^{\mathrm{i} \theta}$ show that

$$
\begin{equation*}
\frac{1}{2}\left(Z^{n}+\frac{1}{Z^{n}}\right) \equiv \cos n \theta \tag{3}
\end{equation*}
$$

(ii) Given that

$$
\cos ^{6} \theta \equiv a \cos 6 \theta+b \cos 4 \theta+c \cos 2 \theta+d
$$

find a, b, c and d.
(iii) Hence, find, in radians, the general solution to the equation

$$
\begin{equation*}
\frac{1}{8} \cos 6 \theta+\frac{3}{4} \cos 4 \theta+\frac{15}{8} \cos 2 \theta+\frac{5}{4}=\frac{1}{2} \tag{7}
\end{equation*}
$$

