Rewarding Learning

ADVANCED
General Certificate of Education
January 2012

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4

[AMC41]

FRIDAY 27 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Use the substitution $u=3 x+2$ to find

$$
\begin{equation*}
\int(3 x+2)^{5} d x \tag{5}
\end{equation*}
$$

2 (a) Find the distance between the points $\mathrm{A}(2,-1,3)$ and $\mathrm{B}(-2,2,-1)$.
(b) Find the angle between the lines

$$
\mathbf{r}_{1}=\left(\begin{array}{l}
1 \tag{6}\\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right) \quad \text { and } \quad \mathbf{r}_{2}=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)+\mu\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
$$

3 A particle is moving in a straight line in such a way that its distance d metres from a fixed point O, t seconds after the motion begins, is given by

$$
d=15 \sin t+20 \cos t \quad 0 \leqslant t \leqslant 2 \pi
$$

(i) Express d in the form

$$
r \sin (t+\alpha)
$$

where r is a positive integer and $0<\alpha<\frac{\pi}{2}$
(ii) Hence find the maximum distance of the particle from O and the time at which it first occurs.

4 (i) Sketch the function $\mathrm{f}(x)=x^{2}-2$ where $x \geqslant 0$
(ii) Hence state the range of $\mathrm{f}(x)=x^{2}-2 \quad$ where $x \geqslant 0$
(iii) Find the inverse function $\mathrm{f}^{-1}(x)$ and state its domain.

5 (i) If

$$
x=3 \sin \theta \quad \text { and } \quad y=2 \cos \theta
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii) Find the equation of the normal to the curve given parametrically by the equations

$$
x=3 \sin \theta \quad \text { and } \quad y=2 \cos \theta
$$

at the point with parameter $\theta=\frac{\pi}{4}$

6 Water is draining from a storage tank.
The rate of change of the depth D of water is proportional to the square of the depth at time t.
(i) Model this by a differential equation.

The initial depth of water is 2 metres and after 5 minutes the depth has reduced to 1.5 m .
(ii) By solving the differential equation, find the time taken for the water to reduce to a depth of 0.8 m .

7 (a) Sketch the graph of

$$
\begin{equation*}
y=\operatorname{cosec} x \quad 0^{\circ} \leqslant x \leqslant 360^{\circ} \tag{2}
\end{equation*}
$$

(b) Solve the equation

$$
\begin{equation*}
\tan 2 \theta=4 \tan \theta \quad 0^{\circ} \leqslant \theta \leqslant 360^{\circ} \tag{9}
\end{equation*}
$$

8 (a) (i) Rewrite $\frac{x+3}{4-x^{2}}$ as partial fractions.
(ii) Hence find

$$
\begin{equation*}
\int \frac{x+3}{4-x^{2}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(b) The graph of part of the curve $y=\sec 2 x \tan 2 x$ is shown in Fig. 1 below.

Fig. 1

Find the exact volume of the solid formed when the area between the curve

$$
y=\sec 2 x \tan 2 x
$$

and the x-axis between $x=0$ and $x=\frac{\pi}{6}$ is rotated through 2π radians about the x-axis.

