

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2012

Mathematics

Assessment Unit F1

assessing Module FP1: Further Pure Mathematics 1

[AMF11]

FRIDAY 20 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all six** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Let
$$\mathbf{M} = \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix}$$
 and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- (i) Show that $M^2 = 2M 3I$ [4]
- (ii) Hence, or otherwise, express the matrix \mathbf{M}^3 in the form $\alpha \mathbf{M} + \beta \mathbf{I}$, where α and β are integers. [4]
- 2 The matrix **M** is given by

$$\begin{pmatrix} 7 & 3 \\ 3 & -1 \end{pmatrix}$$

- (i) Show that the two eigenvalues of M are 8 and -2 [5]
- (ii) For each eigenvalue find a corresponding unit eigenvector. [7]
- **P** is a 2×2 matrix such that

$$\mathbf{P}^{-1}\mathbf{M}\mathbf{P} = \mathbf{D}$$

[1]

where **D** is a diagonal matrix.

(iii) Write down a possible matrix **P**.

3 A binary operation * is defined for all real numbers *a* and *b*. The operation is given as

a * b = a + b - 7

(i) Show that * is associative.	[4]
(ii) Find the identity element.	[3]
(iii) Find the inverse of the element <i>a</i> .	[3]
(iv) Determine whether the set of all real numbers forms a group under the operation * Give clear reasons for your answer.	[2]
 (a) (i) The shear represented by the matrix S maps the points (3, 4) and (7, 1) onto (10, -3) and (15, -7) respectively. Find the matrix S. 	[5]
(ii) The shear represented by the matrix S maps a region P of area 12 cm² to a new region Q.Find the area of Q.	[3]
(b) (i) Describe the difference between an invariant line and a line of invariant points under a linear transformation.	[2]
(ii) The line $y = mx$ is a line of invariant points under the transformation represented by the matrix	
$\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$	

Find the value of *m*.

[5]

4

5 The equation of a circle is given by

$$x^2 + y^2 - 2x - 4y = 0$$

- (i) Find the equation of the tangent to the circle at the point (3, 3). [6]
- (ii) Verify that this tangent passes through the point (1, 7). [1]
- (iii) Hence, or otherwise, find the equation of the other tangent to the circle from the point (1, 7).
- 6 (a) Find all real values of a and b such that

$$(a+bi)^2 = -16 - 30i$$
 [8]

(b) (i) Sketch on an Argand diagram the locus of those points z which satisfy

$$|z - (2 + 4i)| = \sqrt{5}$$
 [3]

(ii) Hence, or otherwise, find the maximum value of |z| for any point z which lies on this locus. [4]