Rewarding Learning

ADVANCED SUBSIDIARY (AS)

General Certificate of Education
January 2012

Mathematics

Assessment Unit F1
 assessing

Module FP1: Further Pure Mathematics 1
[AMF11]

FRIDAY 20 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

$1 \quad$ Let $\mathbf{M}=\left(\begin{array}{cc}2 & -1 \\ 3 & 0\end{array}\right)$ and $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(i) Show that $\mathbf{M}^{2}=2 \mathbf{M}-3 \mathbf{I}$
(ii) Hence, or otherwise, express the matrix \mathbf{M}^{3} in the form $\alpha \mathbf{M}+\beta \mathbf{I}$, where α and β are integers.

2 The matrix \mathbf{M} is given by

$$
\left(\begin{array}{cc}
7 & 3 \\
3 & -1
\end{array}\right)
$$

(i) Show that the two eigenvalues of \mathbf{M} are 8 and -2
(ii) For each eigenvalue find a corresponding unit eigenvector.
\mathbf{P} is a 2×2 matrix such that

$$
\mathbf{P}^{-1} \mathbf{M P}=\mathbf{D}
$$

where \mathbf{D} is a diagonal matrix.
(iii) Write down a possible matrix \mathbf{P}.

3 A binary operation $*$ is defined for all real numbers a and b.
The operation is given as

$$
\begin{equation*}
a * b=a+b-7 \tag{4}
\end{equation*}
$$

(i) Show that $*$ is associative.
(ii) Find the identity element.
(iii) Find the inverse of the element a.
(iv) Determine whether the set of all real numbers forms a group under the operation * Give clear reasons for your answer.

4 (a) (i) The shear represented by the matrix \mathbf{S} maps the points $(3,4)$ and $(7,1)$ onto $(10,-3)$ and $(15,-7)$ respectively.
Find the matrix \mathbf{S}.
(ii) The shear represented by the matrix \mathbf{S} maps a region P of area $12 \mathrm{~cm}^{2}$ to a new region Q .
Find the area of Q .
(b) (i) Describe the difference between an invariant line and a line of invariant points under a linear transformation.
(ii) The line $y=m x$ is a line of invariant points under the transformation represented by the matrix

$$
\left(\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right)
$$

Find the value of m.

5 The equation of a circle is given by

$$
x^{2}+y^{2}-2 x-4 y=0
$$

(i) Find the equation of the tangent to the circle at the point $(3,3)$.
(ii) Verify that this tangent passes through the point $(1,7)$.
(iii) Hence, or otherwise, find the equation of the other tangent to the circle from the point (1,7).

6 (a) Find all real values of a and b such that

$$
\begin{equation*}
(a+b \mathrm{i})^{2}=-16-30 \mathrm{i} \tag{8}
\end{equation*}
$$

(b) (i) Sketch on an Argand diagram the locus of those points z which satisfy

$$
\begin{equation*}
|z-(2+4 i)|=\sqrt{5} \tag{3}
\end{equation*}
$$

(ii) Hence, or otherwise, find the maximum value of $|z|$ for any point z which lies on this locus.

