Rewarding Learning

ADVANCED
General Certificate of Education
January 2012

Mathematics

Assessment Unit C3
assessing
Module C3: Core Mathematics 3
[AMC31]

TUESDAY 17 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Simplify

$$
\begin{equation*}
\frac{x^{2}-16}{x^{2}-2 x-8} \times \frac{x^{2}+5 x+6}{x+4} \tag{5}
\end{equation*}
$$

2 Differentiate
(i) $x(x+2)^{4}$
(ii) $\frac{\ln x}{3 x+1}$

3 (a) Find the first 3 terms in the binomial expansion of

$$
\begin{equation*}
(8+x)^{\frac{1}{3}} \tag{6}
\end{equation*}
$$

(b) Express $\frac{x^{2}+1}{x^{2}-x}$ in partial fractions.

4 (a) Solve

$$
|x-5| \leqslant 3
$$

(b) Sketch the graph of $y=\mathrm{e}^{|x|}$

5 (a) Find a single Cartesian equation, in x and y, which is equivalent to the pair of parametric equations

$$
\begin{equation*}
x=3 \sec t \quad y=2 \operatorname{cosec} t \tag{5}
\end{equation*}
$$

(b) The graph of the function $y=\mathrm{f}(x)$ is sketched in Fig. 1 below.

Fig. 1

Sketch the graph of $y=2 \mathrm{f}(-x)$ stating the coordinates of the images of A, B and C.

6 (a) Find the equation of the tangent to the curve

$$
y=\tan x+\sin 4 x
$$

at the point where $x=\frac{\pi}{4}$
(b) Find

$$
\begin{equation*}
\int \cos x+\frac{x^{2}+1}{x} \mathrm{~d} x \tag{4}
\end{equation*}
$$

7 Fig. 2 below shows a bell tent with shaded vertical section ABCD where
$\mathrm{AD}=0.7 \mathrm{~m}$
$\mathrm{BC}=2.3 \mathrm{~m}$
$\mathrm{DC}=2 \mathrm{~m}$

Fig. 2

The tent's manufacturer measures the height of the curve AB at intervals of 0.5 m along DC . The measurements are shown in Fig. 3 below.

Fig. 3
(i) Use Simpson's rule with 5 ordinates to find an approximation to the area ABCD.

The manufacturer assumes that the curve AB can be modelled by the function $y=0.7 \mathrm{e}^{k x}$
(ii) Using $\mathrm{BC}=2.3$, show that $k \approx 0.595$
(iii) By integrating the function $y=0.7 \mathrm{e}^{0.595 x}$, find an estimate for the area ABCD .

8 (a) Prove that

$$
\operatorname{cosec} x-\sin x \equiv \cot x \cos x
$$

(b) Solve the equation

$$
\cot ^{2} \theta=\operatorname{cosec} \theta+5
$$

$$
\begin{equation*}
\text { for }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \tag{7}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

