Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2011

Mathematics

Assessment Unit F1
 assessing
 Module FP1: Further Pure Mathematics 1

[AMF11]

FRIDAY 24 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 A circle has equation

$$
\begin{equation*}
x^{2}+y^{2}-8 x-14 y+40=0 \tag{6}
\end{equation*}
$$

Find the equation of the tangent to this circle at the point $(8,4)$

2 The transformation represented by the matrix \mathbf{M} maps the points (3, 4) and (5, -2) onto $(10,4)$ and $(8,-2)$ respectively.
(i) Find the matrix \mathbf{M}.

The matrix $\mathbf{N}=\left(\begin{array}{cc}-1 & 1 \\ 2 & 0\end{array}\right)$
The matrix \mathbf{S} represents the combined effect of the transformation represented by \mathbf{N} followed by the transformation represented by \mathbf{M}.
(ii) Show that $\mathbf{S}=\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$
(iii) Find the equations of the straight lines through the origin which are invariant under the transformation represented by \mathbf{S}.

3 Let \mathbf{S} be the set of matrices $\left(\begin{array}{cc}p & q \\ 3 q & -p\end{array}\right)$, where p, q are any real numbers.
Prove that \mathbf{S} forms a group under the operation of matrix addition.
(You may assume that matrix addition is associative.)

4 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ccc}-1 & p & 0 \\ p & 0 & 2 \\ 0 & 2 & 1\end{array}\right)$
One eigenvalue of \mathbf{A} is 3
(i) Prove that $p= \pm 2$

Assuming that $p=2$, find:
(ii) the other eigenvalues of \mathbf{A}
(iii) an eigenvector corresponding to the eigenvalue 3

5 A system of equations is given by

$$
\begin{aligned}
& 3 x+\lambda y-z=3 \\
& 2 \lambda x+y=1 \\
& x-y+z=-2
\end{aligned}
$$

(i) Find both values of λ for which this system does not have a unique solution.
(ii) For each of these values of λ decide whether solutions exist and, if they do, find the general solution.

6 (a) The complex number z is such that

$$
|z|=4, \arg z=\frac{2 \pi}{3}
$$

Express z in the form $a+b \mathrm{i}$, where a and b are real numbers.
(b) Simplify the number

$$
\frac{3-4 i}{2+i}
$$

giving your answer in the form $a+b \mathrm{i}$, where a and b are rational numbers.
(c) (i) Sketch on an Argand diagram the locus of those points w which satisfy

$$
\begin{equation*}
|w-3-2 \mathrm{i}|=2 \tag{3}
\end{equation*}
$$

(ii) On the same Argand diagram, sketch the locus of those points w which satisfy

$$
\begin{equation*}
|w-3-2 \mathrm{i}|=|w+1+2 \mathrm{i}| \tag{3}
\end{equation*}
$$

(iii) Show that no point lies on both loci.

A solution by scale drawing will not be accepted.

THIS IS THE END OF THE QUESTION PAPER

