Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2011

Mathematics

MONDAY 13 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 The line joining the points $\mathrm{A}(-7,4)$ and $\mathrm{B}(1,-2)$ is a diameter of a circle.
(i) Find the coordinates of the centre of the circle.
(ii) Find the radius of the circle.
(iii) Hence write down the equation of the circle.

The point $(0, t)$ lies on the circumference of the circle.
(iv) Find the two possible values of t.

2 (i) Sketch the graphs of

$$
\begin{align*}
y & =3^{x} \\
\text { and } y & =3^{x+2} \tag{3}
\end{align*}
$$

on the same axes.
(ii) Solve the equation

$$
\begin{equation*}
3^{x+2}=2 \tag{3}
\end{equation*}
$$

3 A railway tunnel has a cross section shaped as a major segment of a circle, centre O , with radius 10 m, as shown in Fig. 1 below.

Fig. 1

The angle AOB is 2.1 radians.
(i) Find the area of the major sector ACBO .
(ii) Hence find the area of the cross section of the tunnel.

4 (i) Use the Binomial theorem to expand

$$
\begin{equation*}
(2+x)^{5} \tag{4}
\end{equation*}
$$

(ii) Hence expand

$$
(2-\sqrt{5})^{5}
$$

and express your answer in the form $a+b \sqrt{ } 5$

5 (a) Integrate

$$
\begin{equation*}
4 x^{-2}+3-7 x^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

(b) A hill walking club has designed a new club logo. The club drew the logo as shown in Fig. 2 below.

Fig. 2

The curve can be modelled by the equation

$$
y=2 x^{3}-8 x^{2}+7 x+3
$$

The shaded area is to be coloured green.
Calculate the area of the green part of the logo.
(c) Use the trapezium rule with 5 ordinates to find an approximation for

$$
\begin{equation*}
\int_{0}^{2} \frac{2}{1+x} \mathrm{~d} x \tag{6}
\end{equation*}
$$

6 (a) Solve the equation

$$
\sin \theta=3 \cos \theta
$$

where $0 \leq \theta \leq 2 \pi$
(b) Prove the identity

$$
\begin{equation*}
(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2} \equiv 2 \tag{5}
\end{equation*}
$$

7 (a) A pendulum is set swinging.
During its first oscillation it travels a distance of 50 cm .
Each successive oscillation is 90% of the length of the preceding oscillation.
The distance travelled in each successive oscillation forms a geometric progression.
(i) Find the distance the pendulum travels during the 9th oscillation.
(ii) Find after how many oscillations the length of the oscillation is less than 10 cm .
(iii) Find the total distance travelled by the pendulum at the end of the 20th oscillation.
(b) For the arithmetic progression

$$
a, a+d, a+2 d \ldots
$$

prove that the sum of the first n terms is

$$
\begin{equation*}
\mathrm{S}_{n}=\frac{n}{2}(2 a+(n-1) d) \tag{6}
\end{equation*}
$$

8 Solve the equation

$$
\begin{equation*}
1+2 \log _{5} x=\log _{5}(16 x-3) \tag{8}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

