

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2011

Mathematics

Assessment Unit C2 assessing Module C2: AS Core Mathematics 2

[AMC21]

MONDAY 13 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all eight** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

6079

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1	The line joining the points A $(-7, 4)$ and B $(1, -2)$ is a diameter of a circle.	
	(i) Find the coordinates of the centre of the circle.	[1]
	(ii) Find the radius of the circle.	[1]
	(iii) Hence write down the equation of the circle.	[2]
	The point $(0, t)$ lies on the circumference of the circle.	
	(iv) Find the two possible values of <i>t</i> .	[4]

2 (i) Sketch the graphs of

$$y = 3^x$$

and $y = 3^{x+2}$

on the same axes. [3]]
-----------------------	---

(ii) Solve the equation

$$3^{x+2} = 2$$
 [3]

3 A railway tunnel has a cross section shaped as a major segment of a circle, centre O, with radius 10 m, as shown in **Fig. 1** below.

The angle AOB is 2.1 radians.

(i)	Find the area of the major sector ACBO.	[3]
-----	--	-----

(ii) Hence find the area of the cross section of the tunnel. [3]

4 (i) Use the Binomial theorem to expand

$$(2+x)^5$$
 [4]

(ii) Hence expand

$$(2-\sqrt{5})^5$$

and express your answer in the form $a + b\sqrt{5}$ [2]

5 (a) Integrate

$$4x^{-2} + 3 - 7x^{\frac{1}{2}}$$
^[4]

(b) A hill walking club has designed a new club logo. The club drew the logo as shown in **Fig. 2** below.

The curve can be modelled by the equation

$$y = 2x^3 - 8x^2 + 7x + 3$$

The shaded area is to be coloured green.

Calculate the area of the green part of the logo.

(c) Use the trapezium rule with 5 ordinates to find an approximation for

$$\int_{0}^{2} \frac{2}{1+x} \, \mathrm{d}x$$
 [6]

[6]

$$\sin\theta = 3\cos\theta$$

where $0 \le \theta \le 2\pi$ [4]

(b) Prove the identity

$$(\cos\theta + \sin\theta)^2 + (\cos\theta - \sin\theta)^2 \equiv 2$$
[5]

- 7 (a) A pendulum is set swinging. During its first oscillation it travels a distance of 50 cm. Each successive oscillation is 90% of the length of the preceding oscillation. The distance travelled in each successive oscillation forms a geometric progression.
 (i) Find the distance the pendulum travels during the 9th oscillation. [3]
 - (ii) Find after how many oscillations the length of the oscillation is less than 10 cm. [5]

(iii) Find the total distance travelled by the pendulum at the end of the 20th oscillation.

[2]

(b) For the arithmetic progression

$$a, a + d, a + 2d...$$

prove that the sum of the first n terms is

$$S_n = \frac{n}{2}(2a + (n-1)d)$$
 [6]

8 Solve the equation

$$1 + 2\log_5 x = \log_5(16x - 3)$$
[8]

THIS IS THE END OF THE QUESTION PAPER