Rewarding Learning

ADVANCED
General Certificate of Education 2011

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

TUESDAY 31 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ell \mathrm{n} z$ where it is noted that $\ell \mathrm{n} z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find, in radians, the general solution of the equation

$$
\begin{equation*}
2 \sec ^{2} \theta-3 \tan \theta-1=0 \tag{6}
\end{equation*}
$$

2 If $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right)$, prove by mathematical induction that

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
1 & 0 \\
5 n & 1
\end{array}\right)
$$

where n is a positive integer.

3 (i) Find the sum of the series

$$
\begin{equation*}
\frac{1}{1 \times 4}+\frac{1}{2 \times 5}+\frac{1}{3 \times 6}+\ldots+\frac{1}{n(n+3)} \tag{8}
\end{equation*}
$$

(ii) Hence find

$$
\begin{equation*}
\sum_{r=1}^{\infty} \frac{1}{r(r+3)} \tag{1}
\end{equation*}
$$

4 (i) Find the equation of the parabola with focus $(2,2)$ and directrix $x=8$

The latus rectum of a parabola is the chord parallel to the directrix through the focus.
(ii) Find the length of the latus rectum of the parabola in part (i).

5 Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y \cot x=\cos ^{3} x
$$

given that $y=\frac{3}{8 \sqrt{2}}$ when $x=\frac{\pi}{4}$

6 (i) Use Maclaurin's theorem to find the first four terms in the expansion of

$$
\begin{equation*}
\frac{1}{1+x} \tag{4}
\end{equation*}
$$

where $|x|<1$
(ii) Write

$$
\frac{2 x^{2}+x+27}{\left(9+x^{2}\right)(1-x)}
$$

in partial fractions.
(iii) Hence, or otherwise, derive the first four terms in the expansion of

$$
\begin{equation*}
\frac{2 x^{2}+x+27}{\left(9+x^{2}\right)(1-x)} \tag{6}
\end{equation*}
$$

7 (i) Find, in the form $r \mathrm{e}^{\mathrm{i} \theta}$, the values of the 5 roots of the equation $z^{5}+32=0$, which are shown in Fig. 1 below.

Fig. 1
(ii) Show that a quadratic equation whose roots are A and E is given by

$$
\begin{equation*}
z^{2}-4 z \cos \frac{\pi}{5}+4=0 \tag{4}
\end{equation*}
$$

A quadratic equation whose roots are B and D is given by

$$
z^{2}+4 z \cos \frac{2 \pi}{5}+4=0
$$

(iii) Explain why

$$
(z+2)\left(z^{2}+4 z \cos \frac{2 \pi}{5}+4\right)\left(z^{2}-4 z \cos \frac{\pi}{5}+4\right)=0
$$

is an equation with roots $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$.
(iv) By comparing the coefficients of z^{4} in the equations in parts (iii) and (i) show that

$$
\begin{equation*}
\cos \frac{\pi}{5}=\frac{1+\sqrt{5}}{4} \tag{8}
\end{equation*}
$$

