Rewarding Learning

ADVANCED
General Certificate of Education 2011

Mathematics
Assessment Unit C4
assessing
Module C4: Core Mathematics 4
[AMC41]

WEDNESDAY 1 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Given that the points A and B have position vectors:

$$
\begin{aligned}
\overrightarrow{\mathrm{OA}} & =3 \mathbf{i}-\mathbf{j} \\
\text { and } \overrightarrow{\mathrm{OB}} & =2 \mathbf{i}+6 \mathbf{j}
\end{aligned}
$$

find:
(i) the vector $\overrightarrow{\mathrm{AB}}$;
(ii) the magnitude of $\overrightarrow{A B}$;
(iii) $\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$
(iv) Hence write down the angle AOB.
(i) Differentiate implicitly with respect to x

$$
\begin{equation*}
x+x y-12 \tag{4}
\end{equation*}
$$

(ii) Hence find the equation of the tangent to the curve

$$
\begin{equation*}
x+x y-12=0 \tag{3}
\end{equation*}
$$

at the point $(2,5)$.

$$
R \cos (x-\alpha)
$$

where α is acute and R is real.
(i) Find R and α.
(ii) Hence solve the equation

$$
2 \cos x+4 \sin x=3
$$

$$
\begin{equation*}
\text { where } 0^{\circ} \leqslant x \leqslant 360^{\circ} \tag{5}
\end{equation*}
$$

4 The surface of a goldfish bowl can be modelled by part of the curve

$$
y=\sqrt{144-x^{2}}
$$

being rotated through 2π radians about the x-axis as shown in Fig. 1 below.

Fig. 1

The radius of the bowl is 12 cm and it is to be filled to a depth of 15 cm .
(i) Find the volume of water in the bowl.
(ii) State one criticism of the model.

5 (i) Starting with the appropriate compound angle formula prove that

$$
\begin{equation*}
\sin 2 A \equiv 2 \sin A \cos A \tag{3}
\end{equation*}
$$

(ii) Show that

$$
\begin{equation*}
\tan A+\cot A \equiv \frac{2}{\sin 2 A} \tag{6}
\end{equation*}
$$

6 The amount x of a substance present in a certain chemical reaction after time t can be modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=k(3-x)(4-x)
$$

where k is a constant and $x=0$ when $t=0$
Given that $x=2$ when $t=10$, find the value of k.
$7 \quad$ Fig. 2 below shows a sketch of the graph whose equation is

$$
y=\frac{2 x+3}{x-1}
$$

Fig. 2
(i) Write down the equations of the asymptotes to this graph.

The function f , with domain $x>1$, is defined by

$$
\mathrm{f}: x \rightarrow \frac{2 x+3}{x-1}
$$

(ii) Find the inverse function f^{-1}, stating its domain.

8 (i) Using integration by parts, show that

$$
\begin{equation*}
\int x \ln x \mathrm{~d} x=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c \tag{6}
\end{equation*}
$$

(ii) Using (i), find
(a) $\int x \ln x^{2} d x$
(b) $\int x \ln 3 x d x$

