Rewarding Learning

ADVANCED
General Certificate of Education 2011

Mathematics

Assessment Unit F3
 assessing
 Module FP3: Further Pure Mathematics 3
 [AMF31]

THURSDAY 26 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1
(i) If $x=5 \cos \theta-3$ show that

$$
\begin{equation*}
16-6 x-x^{2}=25 \sin ^{2} \theta \tag{3}
\end{equation*}
$$

(ii) Hence or otherwise show that

$$
\begin{equation*}
\int \frac{1}{\sqrt{16-6 x-x^{2}}} \mathrm{~d} x=-\cos ^{-1}\left(\frac{x+3}{5}\right)+c \tag{4}
\end{equation*}
$$

(i) Using the exponential definitions of $\cosh x$ and $\sinh x$ prove that

$$
\begin{equation*}
2 \cosh 4 x \cosh x \equiv \cosh 5 x+\cosh 3 x \tag{3}
\end{equation*}
$$

(ii) Hence solve, for real values of x, the equation

$$
\cosh 5 x+\cosh 3 x=4 \cosh x
$$

leaving your answers in logarithmic form.

3 (i) Sketch the curve $y=\sinh ^{-1} x$
(ii) Show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}} \tag{4}
\end{equation*}
$$

(iii) Show that

$$
\begin{equation*}
\sinh ^{-1} x \equiv \ln \left(x+\sqrt{1+x^{2}}\right) \tag{4}
\end{equation*}
$$

(iv) Find, in fraction form, the exact solution to the equation

$$
\begin{equation*}
\sinh ^{-1} \frac{3}{4}+\sinh ^{-1} x=\sinh ^{-1} \frac{4}{3} \tag{4}
\end{equation*}
$$

4 A plane Π has vector equation

$$
\mathbf{r} .(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k})=5
$$

(i) Find the shortest distance from the origin to the plane.

The line L has Cartesian equation

$$
\frac{x-2}{3}=\frac{y-5}{-2}=\frac{z+1}{5}
$$

(ii) Find the coordinates of the point where the line L meets the plane Π
(iii) Find the angle between the line L and the plane Π

5 (i) Given that

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \cos x \mathrm{~d} x
$$

show that for $n \geqslant 2$

$$
\begin{equation*}
I_{n}=\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{n-2} \tag{6}
\end{equation*}
$$

(ii) Hence evaluate, in terms of π,

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} x^{4} \cos x \mathrm{~d} x \tag{5}
\end{equation*}
$$

6 (a) (i) Show that if

$$
\begin{align*}
& \qquad y=\sin ^{-1} \sqrt{x}-\sqrt{x(1-x)} \quad|x|<1 \\
& \text { then } \frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{\frac{x}{1-x}} \tag{5}
\end{align*}
$$

(ii) Hence or otherwise find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \sqrt{\frac{x}{1-x}} \mathrm{~d} x \tag{2}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
\int_{0}^{2} \frac{4-3 x}{4+3 x^{2}} \mathrm{~d} x=\frac{2 \pi}{3 \sqrt{3}}-\ln 2 \tag{6}
\end{equation*}
$$

7 With reference to a fixed origin O the points $\mathrm{A}(4,1,3), \mathrm{B}(-2,7,6)$ and $\mathrm{C}(5,-3,2)$ determine the plane ABC .
(i) Find $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}$
(ii) Hence or otherwise find, in the form $\mathbf{r} \cdot \mathbf{n}=d$, an equation of the plane ABC .

The point D with position vector $\overrightarrow{\mathrm{OD}}=11 \mathbf{i}-9 \mathbf{j}+\lambda \mathbf{k}$ is in the plane ABC .
(iii) Find the value of λ.
(iv) What kind of quadrilateral is ABCD ? Justify your answer.
(v) Find, in surd form, the area of the quadrilateral ABCD .

