Rewarding Learning

ADVANCED
General Certificate of Education 2011

Mathematics

Assessment Unit C3
 assessing
 Module C3: Core Mathematics 3

[AMC31]

FRIDAY 20 MAY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$
$\overline{6219.05 R}$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find the first 3 terms in the binomial expansion of $\sqrt{1+2 x}$

2 Fig. 1 below shows the graphs of

$$
y=|3-2 x| \quad \text { and } \quad y=2
$$

Fig. 1

The graphs intersect at the points A and B .
Find the x coordinates of A and B .

3 Use partial fractions to rewrite

$$
\frac{x^{2}+8 x-1}{(x-3)(x-1)^{2}}
$$

in the form

$$
\frac{A}{x-3}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}
$$

where A, B and C are integers.

4 A population of microorganisms grows according to the rule

$$
N=15000 \mathrm{e}^{0.7 t}
$$

where N is the size of the population at time t hours.
(i) Find the initial population.
(ii) Find how long it will take for the population to treble.
$5 \quad$ Fig. 2 below shows the graphs of

$$
y=\sin x \quad \text { and } \quad y=1-x^{3}
$$

Fig. 2
(i) Show that the point of intersection of these graphs can be found by solving the equation

$$
\begin{equation*}
\sin x+x^{3}-1=0 \tag{2}
\end{equation*}
$$

(ii) Verify that this value of x lies between $x=0$ and $x=1$
(iii) Taking $x=0.5$ as a first approximation to this value of x, use the Newton-Raphson method twice to find a better approximation.

6 (a) Find

$$
\begin{equation*}
\int x^{3}-\frac{2}{x}+\operatorname{cosec}^{2} x-\mathrm{e}^{-3 x} \mathrm{~d} x \tag{5}
\end{equation*}
$$

(b) A component of a machine is to be cut from flat steel. It can be modelled as the area between the curve $y=\cos 2 x$, the axes and the line $x=\frac{\pi}{6}$ This is shown shaded in Fig. 3 below.

Fig. 3

Using calculus, determine the area of the component.

7 (a) Differentiate

$$
\frac{x^{4}}{\tan ^{2} x}
$$

(b) Find the exact equation of the tangent to the curve

$$
y=x \ln x
$$

at the point where $x=2$

8 (a) A circle is defined by the parametric equations

$$
x=-1+3 \sin \theta \quad y=2+3 \cos \theta
$$

(i) Find the cartesian equation of this circle.
(ii) Write down the centre and radius of this circle.
(b) (i) Prove the identity

$$
\begin{equation*}
\frac{1-\sin \theta}{1+\cos \theta} \times \frac{1+\sin \theta}{1-\cos \theta} \equiv \cot ^{2} \theta \tag{4}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\frac{1-\sin \theta}{1+\cos \theta} \times \frac{1+\sin \theta}{1-\cos \theta}=\cot \theta+2
$$

$$
\begin{equation*}
\text { where }-\pi \leqslant \theta \leqslant \pi \tag{6}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

