Rewarding Learning

ADVANCED
General Certificate of Education
January 2011

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4
 [AMC41]

FRIDAY 28 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

6136

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1
(a) (i) Write

$$
\begin{equation*}
\frac{1}{(x+1)(x-1)} \tag{4}
\end{equation*}
$$

in partial fractions.
(ii) Hence find

$$
\begin{equation*}
\int \frac{1}{(x+1)(x-1)} \mathrm{d} x \tag{4}
\end{equation*}
$$

(b) Use integration by parts to find

$$
\begin{equation*}
\int x \cos x d x \tag{5}
\end{equation*}
$$

2 The vector equation of the line PQ is

$$
\mathbf{r}=(2 \mathbf{i}+3 \mathbf{j})+\mu(\mathbf{i}-\mathbf{j}-2 \mathbf{k}) .
$$

The line PR has direction vector

$$
(4 \mathbf{i}+5 \mathbf{j}+\mathbf{k})
$$

Find the angle between the lines PQ and PR.

3 Solve the equation

$$
\begin{equation*}
\cos x=2 \sin \left(x+60^{\circ}\right) \tag{7}
\end{equation*}
$$

for $-180^{\circ} \leqslant x \leqslant 180^{\circ}$

4 A curve is given parametrically as

$$
x=\cot \theta \quad y=\operatorname{cosec} \theta
$$

(i) Show that the cartesian equation of the curve is

$$
\begin{equation*}
y^{2}=1+x^{2} \tag{2}
\end{equation*}
$$

(ii) Hence find the exact gradients of the tangents to the curve at the points where $x=1$

5 (i) Show that

$$
\begin{equation*}
\tan x \sec ^{4} x \equiv \tan x \sec ^{2} x+\tan ^{3} x \sec ^{2} x \tag{3}
\end{equation*}
$$

(ii) Hence, and by using the substitution $u=\tan x$, or otherwise, find

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \tan x \sec ^{4} x d x \tag{7}
\end{equation*}
$$

6 Solve the differential equation

$$
\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x(1+y)
$$

to find y in terms of x, given that $x=0$ when $y=0$

7 The bowl of a glass can be modelled by the rotation of the curve

$$
y=\mathrm{e}^{\frac{x}{6}}
$$

between $x=0$ and $x=9 \mathrm{~cm}$, as shown in Fig. 1 below, through 2π radians about the x-axis.

Fig. 1

Find the maximum volume that the glass can hold.

8 The function f is defined as

$$
\mathrm{f}: x \rightarrow \sin x \quad \text { for }-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}
$$

(i) Write down the inverse function f^{-1} and state its domain and range.

The function g is defined as

$$
\mathrm{g}: x \rightarrow|x| \quad \text { for } x \in \mathbb{R}
$$

(ii) Find the composite function gf, stating its range.
(iii) Hence sketch the graph of

$$
\begin{equation*}
y=\operatorname{gf}(x) \tag{3}
\end{equation*}
$$

