Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2011

Mathematics

Assessment Unit C2
 assessing
 Module C2: AS Core Mathematics 2

[AMC21]

MONDAY 24 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figure unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three signficant figures unless otherwise stated.

1 The arc of the sector of a circle subtends an angle of 1.5 radians at its centre as shown in Fig. 1 below.

Fig. 1
The area of this sector is $36 \mathrm{~cm}^{2}$
(i) Find the radius of the circle.
(ii) Find the perimeter of the sector.

2 Fig. 2 below shows a plan of a field ABCD .

Fig. 2
(i) Find the length of AC.
(ii) Find the area of the triangle ABC .
(iii) Find the angle ADC.
(iv) Find the area of the field.

3 A circle is given by the equation

$$
x^{2}-2 x+y^{2}+4 y=4
$$

(i) Find the centre and radius of the circle.

A tangent is drawn to the circle from the point $\mathrm{A}(5,6)$.
The tangent touches the circle at the point B as shown in Fig. 3 below.

Fig. 3
(ii) Find the length AB .

4 (a) (i) Sketch the graph of

$$
\begin{equation*}
y=\tan 2 x \tag{2}
\end{equation*}
$$

for $-180^{\circ}<x<180^{\circ}$
(ii) State the period of this graph.
(iii) Solve the equation

$$
\begin{equation*}
\tan 2 x=3 \tag{4}
\end{equation*}
$$

for $-180^{\circ}<x<180^{\circ}$
(b) Prove the identity

$$
\begin{equation*}
\frac{1-\cos ^{2} \theta}{\sin \theta \cos \theta}=\tan \theta \tag{3}
\end{equation*}
$$

5 (a) Find

$$
\begin{equation*}
\int 6 \sqrt{x}-\frac{2}{x^{3}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(b) The graphs of

$$
\begin{gathered}
y=x^{2}-8 x+16 \\
\text { and } \\
y=4+6 x-x^{2}
\end{gathered}
$$

are shown in Fig. 4 below.

Fig. 4
The coordinates of the points of intersection of the curves are $(1,9)$ and $(6,4)$.

Find the area between the 2 curves.

6 (a) A sequence is defined recursively by

$$
u_{n+1}=\frac{3}{10} u_{n}+4
$$

where $u_{1}=-5$
(i) Find the values of u_{2} and u_{3}
(ii) The sequence converges to a limit l.

By forming and solving an equation, find the exact value of l.
(b) A solution by trial and improvement is not acceptable.

Bill has borrowed a sum of money.
His repayments will form an Arithmetic Progression.
He agrees to repay $£ 200$ at the end of the first month, $£ 195$ at the end of the second month, $£ 190$ at the end of the third month and so on until the loan is repaid.
(i) Find how much he will repay at the end of the 12 th month.
(ii) Find after how many months he will make his final repayment.
(iii) Calculate the total amount of money that he will repay.

7 (a) (i) Rewrite as a single logarithm

$$
\begin{equation*}
\log _{3} 8-3 \log _{3} x \tag{3}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\begin{equation*}
\log _{3} 8-3 \log _{3} x=3 \tag{4}
\end{equation*}
$$

(b) A solution by trial and improvement is not acceptable.

A patch of mould increases its area by 12% each day.
Initially the patch of mould has an area of A_{0}
Find after how many days the area of the patch of mould is 17 times A_{0}

8 If

$$
(1+a x)^{n}=1-4 x+7 x^{2}+\ldots
$$

find the values of a and n.

THIS IS THE END OF THE QUESTION PAPER

