Rewarding Learning

ADVANCED
General Certificate of Education
January 2011

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

WEDNESDAY 2 FEBRUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Show that the sum of the series

$$
1 \times 2 \times 5+2 \times 3 \times 6+\ldots+n(n+1)(n+4)
$$

is given by

$$
\begin{equation*}
\frac{1}{12} n(n+1)(n+2)(3 n+17) \tag{6}
\end{equation*}
$$

2 Write

$$
\frac{2 x^{2}-x+1}{\left(x^{2}+1\right)\left(x^{2}+2\right)}
$$

in partial fractions.

3 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-6 y=\sin x \tag{12}
\end{equation*}
$$

4 (i) Using Maclaurin's theorem, derive a series expansion for $\cos \theta$ up to and including the term in θ^{4}
(ii) Hence, and using a binomial expansion, find a series expansion for

$$
\begin{equation*}
\frac{\cos 3 x}{\sqrt{1-x^{2}}} \tag{8}
\end{equation*}
$$

up to and including the terms in x^{4}

5 Prove by mathematical induction that

$$
a_{n}=5^{n}+3
$$

is divisible by 4 for each non-negative integer n.

6

Fig. 1

Fig. 1 above shows an ellipse with equation

$$
\frac{x^{2}}{17^{2}}+\frac{y^{2}}{8^{2}}=1
$$

The foci of the ellipse are $\mathrm{F}^{\prime}, \mathrm{F}$ and its directrices are D^{\prime} and D .
(i) Show that the equation of the directrix D is $x=\frac{289}{15}$
(ii) Find the coordinates of the focus F.
(iii) Derive the equation of the tangent to the ellipse at a general point $(17 \cos \theta, 8 \sin \theta)$
PP^{\prime} is a latus rectum of the ellipse.
(iv) Show that the tangent at P meets the x-axis on the directrix D .

7 (i) If $z=\cos \theta+\mathrm{i} \sin \theta$ is a complex number, show that

$$
\begin{equation*}
\cos \theta=\frac{1}{2}\left(z+z^{-1}\right) \tag{2}
\end{equation*}
$$

(ii) Hence find numbers a, b and c such that

$$
\begin{equation*}
\cos ^{4} \theta=a \cos 4 \theta+b \cos 2 \theta+c \tag{7}
\end{equation*}
$$

(iii) Hence, or otherwise, find the general solution of

$$
\begin{equation*}
2 \cos 4 \theta+8 \cos 2 \theta+5=0 \tag{6}
\end{equation*}
$$

