Rewarding Learning

ADVANCED SUBSIDIARY (AS)

General Certificate of Education
January 2011

Mathematics

Assessment Unit F1
 assessing
 Module FP1: Further Pure Mathematics 1

[AMF11]

WEDNESDAY 19 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left(\begin{array}{cc}
7 & -4 \\
-2 & 5
\end{array}\right)
$$

(i) Show that the eigenvalues of \mathbf{A} are 3 and 9
(ii) Find a unit eigenvector corresponding to the eigenvalue 9

2 Two circles have equations

$$
\begin{array}{r}
x^{2}+y^{2}+2 x-6 y+8=0 \\
x^{2}+y^{2}-4 x-28=0
\end{array}
$$

(i) Find the point where these circles meet.
(ii) Determine whether the circles touch internally or externally.

3 (a) Explain why the set $\{1,2,3,4,5,6,7\}$ cannot form a group under multiplication modulo 8
(b) (i) Copy and complete the group table for addition modulo 8

	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5					
4	4	5	6					
5	5	6	7					
6	6	7	0					
7	7	0	1					

(ii) Using the group table in (i), or otherwise, write down the two values of x which satisfy

$$
\begin{equation*}
x^{3}=x \tag{2}
\end{equation*}
$$

(iii) For this group, write down a subgroup of order 4

4 (a) Describe fully the transformation given by the matrix

$$
\mathbf{M}=\left(\begin{array}{cc}
-\frac{3}{5} & \frac{4}{5} \tag{5}\\
\frac{4}{5} & \frac{3}{5}
\end{array}\right)
$$

(b) The set of points which form the circle

$$
x^{2}+y^{2}=25
$$

is mapped under a transformation given by the matrix

$$
\mathbf{N}=\left(\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right)
$$

Show that the equation of the curve formed by the image points is

$$
\begin{equation*}
5 X^{2}+13 Y^{2}-16 X Y=25 \tag{8}
\end{equation*}
$$

5 A matrix \mathbf{M} is given by

$$
\mathbf{M}=\left(\begin{array}{ccc}
3 & 2 & a \\
1 & -2 & -1 \\
a & 0 & 3
\end{array}\right)
$$

(i) Find, in terms of a, the determinant of \mathbf{M}.

A system of linear equations is given by

$$
\begin{array}{r}
3 x+2 y+a z=7 \\
x-2 y-z=1 \\
a x+3 z=11
\end{array}
$$

(ii) Find the values of a for which the system has a unique solution.
(iii) If $a=1$, find the inverse of \mathbf{M}.
(iv) Hence, for $a=1$ find the unique solution of the system of equations.

6 (a) Find the complex roots of the equation

$$
\begin{equation*}
2 z^{2}-2 \mathrm{i} z-5=0 \tag{4}
\end{equation*}
$$

(b) (i) Sketch, on an Argand diagram, the locus of those points w which satisfy

$$
\begin{equation*}
|w-3|=5 \tag{3}
\end{equation*}
$$

(ii) On the same diagram, shade the region which represents the locus of those points w which satisfy

$$
|w-3| \leq 5
$$

and

$$
\begin{equation*}
\frac{\pi}{6} \leq \arg (w-3) \leq \frac{\pi}{4} \tag{6}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

