Rewarding Learning

ADVANCED
General Certificate of Education 2010

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4

[AMC41]

MONDAY 24 MAY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated. You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Points P, Q and R have position vectors

$$
\begin{align*}
& \overrightarrow{\mathrm{OP}}=4 \mathbf{i}+4 \mathbf{j} \\
& \overrightarrow{\mathrm{OQ}}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \\
& \overrightarrow{\mathrm{OR}}=8 \mathbf{j}+6 \mathbf{k} \tag{2}
\end{align*}
$$

(i) Find $\overrightarrow{\mathrm{QP}}$.
(ii) Find $\overrightarrow{\mathrm{QR}}$.
(iii) Show that the triangle PQR is right-angled at Q .

2 A vase is formed when the area bounded by the curve

$$
y=3+2 \sqrt{x}
$$

and the lines $x=0$ and $x=4$ is rotated through 360° about the x-axis, as shown in Fig. 1 below.

Fig. 1
Find the volume of the vase.

3 (a) The function $\mathrm{f}(x)=x^{2}+4 x$ with domain $\{x: x \in \mathrm{R}, x \geqslant a\}$ is a one-to-one function. By sketching this function, find the least value of a.
(b) The function $\mathrm{g}(x)=\frac{4 x}{x-3}$ has domain $\{x: x \in \mathrm{R}, x \neq b\}$.
(i) Write down the value of b.
(ii) Find the inverse function $\mathrm{g}^{-1}(x)$ stating its domain.
(iii) Hence write down the range of $\mathrm{g}(x)$.

4 In the atmosphere, the air pressure P (Pascals) decreases with the height $h(\mathrm{~km})$ above sea level at a rate that is proportional to the pressure.
(i) Model this by a differential equation.

At sea level the air pressure is 100000 Pa .
At 1 km above sea level the air pressure is 88000 Pa .
(ii) By solving the differential equation, find the air pressure at 400 m above sea level.

5 (a) Use the substitution $u=x-2$ to find

$$
\begin{equation*}
\int \frac{3 x}{\sqrt{x-2}} \mathrm{~d} x \tag{7}
\end{equation*}
$$

(b) Evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} 4 x \cos 2 x \mathrm{~d} x \tag{7}
\end{equation*}
$$

6 A curve is defined by

$$
x=t^{4}-6 \quad \text { and } \quad y=2 t^{2}-8 t+6
$$

(i) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{t-2}{t^{3}}
$$

(ii) Hence find the coordinates of the turning point and determine its nature.

7 (a) Sketch the graph of

$$
y=\sin ^{-1} x
$$

State the restricted domain of this function.
(b) Solve the equation

$$
\sin 2 \theta=\cos \theta
$$

$$
\begin{equation*}
\text { for }-\pi \leqslant \theta \leqslant \pi \tag{5}
\end{equation*}
$$

(c) Prove the identity

$$
\begin{equation*}
\frac{1+\tan ^{2} x}{1-\tan ^{2} x} \equiv \sec 2 x \tag{7}
\end{equation*}
$$

