Rewarding Learning

ADVANCED
General Certificate of Education
January 2010

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4

[AMC41]

FRIDAY 29 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Relative to a fixed origin O ,
point A has position vector $2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and
point C has position vector $-4 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$
(i) Find a vector equation of the line AC.

The points OABC are the vertices of a parallelogram.
(ii) Find the position vector $\overrightarrow{\mathrm{OB}}$.
(iii) Hence find the acute angle between the diagonals OB and AC .

2 Let

$$
\begin{aligned}
& \mathrm{g}(x)= \begin{cases}x^{3} & 0 \leqslant x \leqslant 2 \\
4 x & 2 \leqslant x \leqslant 5\end{cases} \\
& \text { and } \\
& \mathrm{h}(x)= \begin{cases}x^{3} & 0 \leqslant x \leqslant 2 \\
4 x+1 & 2 \leqslant x \leqslant 5\end{cases}
\end{aligned}
$$

(a) Which of g or h is a function? Give a reason for your answer.
(b) A function f is defined as

$$
\mathrm{f}(x)=4-x^{2} \quad x \in \mathbb{R}
$$

(i) Sketch the graph of $y=\mathrm{f}(x)$.
(ii) Hence state the range of $\mathrm{f}(x)$.
(iii) Write down two functions $\mathrm{a}(x)$ and $\mathrm{b}(x)$ such that $\mathrm{f}(x)$ is equal to the composite function $\mathrm{ab}(x)$.
State the domains of the two functions.

3 (i) Rewrite $(8 \sin \theta+6 \cos \theta)$ in the form

$$
R \sin (\theta+\alpha)
$$

where R is an integer and $0 \leqslant \alpha \leqslant \frac{\pi}{2}$
(ii) Hence state the maximum and minimum values of

$$
\begin{equation*}
8 \sin \theta+6 \cos \theta \tag{2}
\end{equation*}
$$

(iii) A mass is suspended from the end of a spring, as shown in Fig. 1 below.

Fig. 1
The mass is oscillating.
After t seconds the distance $d(\mathrm{~cm})$ between the fixed point P and the mass is given by

$$
d=15+8 \sin 2 t+6 \cos 2 t
$$

Find the time at which the mass is first at its lowest point.

4 (i) Differentiate

$$
\begin{equation*}
x^{3}-3 x^{2} y+2 y^{2}=3 \tag{5}
\end{equation*}
$$

implicitly with respect to x.
(ii) Hence find the equation of the tangent to the curve

$$
x^{3}-3 x^{2} y+2 y^{2}=3
$$

at the point $(1,2)$.

5 Solve the differential equation

$$
\begin{equation*}
\left(\sin ^{2} \theta\right) \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{4}{x^{2}} \tag{7}
\end{equation*}
$$

given that $x=3$ when $\theta=\frac{\pi}{4}$

6 A trophy is to be made in the shape of a rugby ball. It can be modelled by the volume generated when the area between the curve

$$
y=\sin x
$$

and the x-axis, between $x=0$ and $x=\pi$, is rotated through 2π radians about the x-axis, as shown in Fig. 2 below.

Fig. 2
Find the exact volume of the trophy.

7 (a) Sketch the graph of

$$
\begin{equation*}
y=\cot x \quad \text { for }-180^{\circ} \leqslant x \leqslant 180^{\circ} \tag{2}
\end{equation*}
$$

(b) Prove the identity

$$
\begin{equation*}
\frac{1}{\sin 2 \theta}+\cot 2 \theta \equiv \cot \theta \tag{7}
\end{equation*}
$$

8 (a) Find $\int 2 x^{4} \ln 3 x d x$
(b) Use partial fractions to find

$$
\begin{equation*}
\int \frac{x+9}{3-2 x-x^{2}} d x \tag{8}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

