

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2010

Mathematics

Assessment Unit S1 assessing Module S1: Statistics 1

[AMS11]

WEDNESDAY 27 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_a z$

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

- Adele is planning to collect data concerning distances between trees in a forest for a geography project.
 She decides to take data from a sample of trees.
 - (i) Give one advantage and one disadvantage of using a sample. [2]

When summarising her data she decides to use a grouped frequency table.

(ii) Give one advantage and one disadvantage of using a grouped frequency table. [2]

Adele's data is given in **Table 1** below.

Table 1

Distance apart (metres)	0-	5 –	10-	15-	20-	25 –
Number of pairs of trees	17	23	10	4	2	0

(iii) Calculate the mean and variance of Adele's sample.

2 The probability distribution of a random variable *X* is shown in **Table 2** below.

Table 2

x	-2	-1	0	1	2
$\mathbf{P}(X=x)$	0.16	k	0.25	k	0.31

(i) Find the value of k.

(ii) Find E(X) and Var(X).

A random variable, *Y*, is related to *X* by the formula Y = 1 - 4X

(iii) Find E(Y) and Var(Y).

5265

[5]

[2]

[6]

[3]

3	Vehicles on a motorway pass under a bridge at a constant average rate of 8 per minute. Using a Poisson model, find the probability that:	
	(i) exactly 6 vehicles pass under the bridge in a one minute period;	[2]
	(ii) at least 2 vehicles pass under the bridge in a fifteen second period.	[5]
	(iii) Give one assumption that has been made regarding the vehicles passing under the bridge.	[1]
4	A biased die is such that the probability of scoring six is 0.25 It is thrown eight times and the scores noted. Find the probability that:	
	(i) the score is six on exactly three occasions;	[3]
	(ii) the score is six on at least three occasions.	[5]
	(iii) If the score is six on at least three occasions, find the probability that it occurs exactly five times.	[4]
5	The masses of bags of potatoes are known to be Normally distributed. The standard deviation of the masses is known to be 40 grams. The heaviest 2.5% weigh greater than 2678.4 grams.	
	(i) Find the mean mass of the bags.	[5]
	A bag of potatoes is chosen at random.	
	(ii) Find the probability that it has mass between 2540 and 2610 grams.	[6]

6 A shopping centre has an overflow car park which opens for a six-hour period at peak times. The times, in hours, that vehicles spend in the car park can be modelled by the continuous random variable X with probability density function f(x) defined by

$$f(x) = \frac{1}{108}(6x^2 - x^3) \qquad 0 \le x \le 6$$

(i) Find the mean time spent in the car park.

Find the probability that a vehicle chosen at random spent:

- (ii) less than two hours in the car park;
- (iii) between two and four hours in the car park.

The charges for the car park are shown in **Table 3** below.

Table 3

Time	Less than two hours	between two and four hours	longer than four hours
Charge	£2.50	£3.50	£4.50

(iv) Find the expected charge for parking in the car park.

A bowl contains six chocolates: three milk chocolates and three plain chocolates.
 A second bowl contains two milk chocolates and one plain chocolate.
 Two chocolates are chosen at random from the first bowl and transferred to the second bowl.
 A chocolate is then chosen at random from the second bowl.

- (i) Find the probability of transferring one chocolate of each type to the second bowl. [3]
- (ii) Find the probability that the chocolate chosen from the second bowl is a plain chocolate.

[7]

THIS IS THE END OF THE QUESTION PAPER

[4]

[3]

[2]

[5]