Rewarding Learning

ADVANCED SUBSIDIARY (AS)
 General Certificate of Education
 January 2010

Mathematics

Assessment Unit S1
assessing
Module S1: Statistics 1
[AMS11]

WEDNESDAY 27 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Adele is planning to collect data concerning distances between trees in a forest for a geography project.
She decides to take data from a sample of trees.
(i) Give one advantage and one disadvantage of using a sample.

When summarising her data she decides to use a grouped frequency table.
(ii) Give one advantage and one disadvantage of using a grouped frequency table.

Adele's data is given in Table $\mathbf{1}$ below.

Table 1

Distance apart (metres)	$0-$	$5-$	$10-$	$15-$	$20-$	$25-$
Number of pairs of trees	17	23	10	4	2	0

(iii) Calculate the mean and variance of Adele's sample.

2 The probability distribution of a random variable X is shown in Table 2 below.

Table 2

x	-2	-1	0	1	2
$\mathrm{P}(X=x)$	0.16	k	0.25	k	0.31

(i) Find the value of k.
(ii) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

A random variable, Y, is related to X by the formula $Y=1-4 X$
(iii) Find $\mathrm{E}(Y)$ and $\operatorname{Var}(Y)$.

3 Vehicles on a motorway pass under a bridge at a constant average rate of 8 per minute. Using a Poisson model, find the probability that:
(i) exactly 6 vehicles pass under the bridge in a one minute period;
(ii) at least 2 vehicles pass under the bridge in a fifteen second period.
(iii) Give one assumption that has been made regarding the vehicles passing under the bridge.

4 A biased die is such that the probability of scoring six is 0.25
It is thrown eight times and the scores noted.
Find the probability that:
(i) the score is six on exactly three occasions;
(ii) the score is six on at least three occasions.
(iii) If the score is six on at least three occasions, find the probability that it occurs exactly five times.

5 The masses of bags of potatoes are known to be Normally distributed.
The standard deviation of the masses is known to be 40 grams.
The heaviest 2.5% weigh greater than 2678.4 grams.
(i) Find the mean mass of the bags.

A bag of potatoes is chosen at random.
(ii) Find the probability that it has mass between 2540 and 2610 grams.

6 A shopping centre has an overflow car park which opens for a six-hour period at peak times. The times, in hours, that vehicles spend in the car park can be modelled by the continuous random variable X with probability density function $\mathrm{f}(x)$ defined by

$$
f(x)=\frac{1}{108}\left(6 x^{2}-x^{3}\right) \quad 0 \leqslant x \leqslant 6
$$

(i) Find the mean time spent in the car park.

Find the probability that a vehicle chosen at random spent:
(ii) less than two hours in the car park;
(iii) between two and four hours in the car park.

The charges for the car park are shown in Table 3 below.
Table 3

Time	Less than two hours	between two and four hours	longer than four hours
Charge	$£ 2.50$	$£ 3.50$	$£ 4.50$

(iv) Find the expected charge for parking in the car park.

7 A bowl contains six chocolates: three milk chocolates and three plain chocolates.
A second bowl contains two milk chocolates and one plain chocolate.
Two chocolates are chosen at random from the first bowl and transferred to the second bowl.
A chocolate is then chosen at random from the second bowl.
(i) Find the probability of transferring one chocolate of each type to the second bowl.
(ii) Find the probability that the chocolate chosen from the second bowl is a plain chocolate.

THIS IS THE END OF THE QUESTION PAPER

