Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2010

Mathematics

Assessment Unit C2
assessing
Module C2: AS Core Mathematics 2
[AMC21]
MONDAY 25 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.
1 A circle has centre C and radius 3
Fig. 1 below shows a sketch of this circle.

Fig. 1
The chord $A B$ is 4 units long.
(i) Show that the angle ACB is approximately 1.46 radians.
(ii) Find the area of the sector ADBC.
(iii) Hence find the area of the shaded segment.

C has coordinates $(2,1)$.
(iv) Write down an equation for this circle.

2
(i) Given that

$$
\frac{\left(x^{2}+2\right)^{2}}{x^{2}}=x^{2}+B+\frac{C}{x^{2}}
$$

show that $B=C=4$
(ii) Hence find

$$
\begin{equation*}
\int_{1}^{2} \frac{\left(x^{2}+2\right)^{2}}{x^{2}} \mathrm{~d} x \tag{5}
\end{equation*}
$$

3 (i) Prove that the sum of the first n terms of an arithmetic series, with first term a and common difference d, is

$$
\begin{equation*}
S_{n}=\frac{n}{2}[2 a+(n-1) d] \tag{5}
\end{equation*}
$$

The sum of the first two terms of an arithmetic series is 2
The 41st term is 475
(ii) Show that the first term and the common difference are -5 and 12 respectively.
(iii) Hence find the sum of the first 20 terms of this series.

4 Find the term in x^{3} in the binomial expansion of

$$
\begin{equation*}
(2-x)^{10} \tag{4}
\end{equation*}
$$

5 The depth of a river of width 60 m is measured at 10 m intervals across its cross-section.

Distance, x, in metres	0	10	20	30	40	50	60
Depth, y, in metres	0	1.16	2.48	5.25	3.79	6.24	1.31

(i) Use the trapezium rule to find an approximate value for the area of the cross-section. [4]

This cross-section of the river is now modelled as the region bounded by the curve

$$
y=\frac{1}{180}\left(x^{2}-60 x\right) \quad \text { for } 0 \leqslant x \leqslant 60
$$

and the line $y=0$
(ii) Using integration, find the area of the cross-section given by the model.
(iii) Suggest one reason why the model may not be a good one.

6 (a) Given that

$$
\sin A=\frac{p}{q}
$$

and that A is acute, find

$$
\begin{equation*}
\tan ^{2} A \tag{4}
\end{equation*}
$$

(b) Solve

$$
\begin{equation*}
\frac{1}{2} \tan x-\sin x=0 \tag{7}
\end{equation*}
$$

for $-180^{\circ} \leqslant x \leqslant 180^{\circ}$

7 (a) Write as a single logarithm in base 5

$$
\begin{equation*}
\log _{5} 15+2 \log _{5} 2-\log _{25} 9 \tag{8}
\end{equation*}
$$

(b) A country's population at the end of each year is 5\% greater than at the start of that year.
Model the population to be increasing at a constant rate.
(i) Find an expression for the population after t years.
(ii) Find how many years it will take for the population to increase by 50%

