Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2010

Mathematics

Assessment Unit F1
 assessing

Module FP1: Further Pure Mathematics 1
[AMF11]

WEDNESDAY 20 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or a scientific calculator in this paper.

1 The circles C_{1} and C_{2} are given by the following equations

$$
\begin{array}{ll}
\mathrm{C}_{1}: & x^{2}+y^{2}-2 x-24=0 \\
\mathrm{C}_{2}: & x^{2}+y^{2}-6 x-8 y+20=0 \tag{8}
\end{array}
$$

Find the points of intersection of the circles C_{1} and C_{2}

2 (a) The matrix $\mathbf{P}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Describe fully the transformation represented by \mathbf{P}
(b) The matrix $\mathbf{Q}=\left(\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right)$
(i) Find the determinant of \mathbf{Q}
(ii) Explain clearly how this value relates to the areas of a triangle T and its image under the transformation represented by \mathbf{Q}

The matrix \mathbf{R} represents the combined effect of the transformation represented by \mathbf{P} followed by the transformation represented by \mathbf{Q}
(iii) Calculate the matrix \mathbf{R}
(iv) The point A is mapped to the point $(1,-1)$ by the matrix \mathbf{R} Find the coordinates of A.

3 (i) Show that the determinant of

$$
\left(\begin{array}{ccc}
2 & 1 & a+1 \\
3 & a & 2 \\
-1 & -3 & 3
\end{array}\right)
$$

is

$$
\begin{equation*}
a^{2}-2 a-8 \tag{3}
\end{equation*}
$$

Consider the system of linear equations, where x, y and z are real numbers.

$$
\begin{array}{r}
2 x+y+(a+1) z=a \\
3 x+a y+2 z=2 \\
-x-3 y+3 z=6
\end{array}
$$

(ii) If $a=3$, find how many solutions the system of equations has.
(iii) Find how many solutions exist when $a=4$

4 A child's toy consists of 5 congruent equally spaced shapes as shown in Fig. 1 below.

Fig. 1
(i) Define clearly the symmetries of this shape.
(ii) Hence construct the table for the symmetry group G of this shape.
(iii) Copy and complete the table for the group H formed under addition modulo 5

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2				
3	3				
4	4				

(iv) Are the groups G and H isomorphic? Justify your answer.

5 The matrix $\mathbf{M}=\left(\begin{array}{ccc}4 & -2 & 0 \\ -2 & 8 & 1 \\ 0 & 1 & 4\end{array}\right)$
(i) Find the eigenvalues of \mathbf{M}
(ii) For the eigenvalue $\lambda=3$ find a corresponding eigenvector.
(iii) Verify that $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 5 \\ 1\end{array}\right)$ are eigenvectors of \mathbf{M}
(iv) If $\mathbf{P}^{\mathrm{T}} \mathbf{M P}=\mathbf{D}$, where \mathbf{D} is a diagonal matrix, write down a possible matrix \mathbf{P}

6 A solution by scale drawing will not be accepted in this question.

(a) The complex number p is given by $p=3+2 \mathrm{i}$

Calculate $\frac{1}{p}$ leaving your answer in the form $a+b \mathrm{i}$, where a and b are rational numbers.
(b) (i) Sketch, on an Argand diagram, the locus of those points z which satisfy

$$
\begin{equation*}
\arg (z-3 i)=\frac{\pi}{4} \tag{3}
\end{equation*}
$$

(ii) On the same diagram, sketch the locus of those points w which satisfy

$$
\begin{equation*}
|w-4+\mathrm{i}|=|w+4-3 \mathrm{i}| \tag{3}
\end{equation*}
$$

(iii) Find the point of intersection of these loci.

THIS IS THE END OF THE QUESTION PAPER

