

ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2010

# Mathematics

Assessment Unit M1 assessing Module M1: Mechanics 1



## [AMM11]

## WEDNESDAY 20 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

#### INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all eight** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

#### **INFORMATION FOR CANDIDATES**

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them.

Take  $g = 9.8 \text{ m s}^{-2}$ , unless specified otherwise.

A copy of the Mathematical Formulae and Tables booklet is provided.

Answer all eight questions.

#### Show clearly the full development of your answers.

#### Answers should be given to three significant figures unless otherwise stated.

1 A box of mass 3 kg is being pulled by a horizontal rope along a rough horizontal surface as shown in **Fig. 1** below.



Fig. 1

The coefficient of friction between the box and the surface is 0.2 The box is moving at a constant speed.

Find the force exerted on the box by the rope.

2 A small ring R, of mass 0.15 kg, is threaded on to an inextensible string. The ends of the string are attached to two fixed points A and B on the same horizontal level as shown in **Fig. 2** below.



Fig. 2

A horizontal force of magnitude *X* newtons acts on the ring. When the system is in equilibrium

$$B\hat{A}R = 30^{\circ}$$
  
and  $A\hat{B}R = 40^{\circ}$ 

- (i) Draw a diagram showing the external forces acting on R.
- (ii) Find the tension in the string and hence find X.

[7]

[2]

[6]

**3** Two marbles A and B are moving directly towards each other on a smooth horizontal surface.

A has mass 0.4 kg and speed  $1.4 \text{ m s}^{-1}$ 

B has mass 0.6 kg and speed  $0.8 \text{ m s}^{-1}$ 

They collide and after the collision B has speed  $0.6 \,\mathrm{m\,s^{-1}}$  and its direction of motion is reversed.

Find the speed and direction of motion of A after the collision. [6]

## 4 Take g to be $10 \text{ m s}^{-2}$ in this question.

A lorry of mass 6000 kg is ascending a hill inclined at an angle  $\theta$  to the horizontal, where  $\sin \theta = \frac{3}{5}$ 

The resistance to the motion of the lorry is 140000 N. The lorry has a deceleration of  $2 \text{ m s}^{-2}$ 

- (i) Draw a diagram showing the external forces acting on the lorry. [2]
- (ii) Find the tractive force produced by the lorry's engine. [5]
- 5 A particle P is moving so that its velocity,  $v \text{ m s}^{-1}$ , after t seconds is given by

 $v = 3t^2 - 4t$ 

Initially P is at rest and is a displacement of 3 m from a fixed point O.

| (i) | Find <i>v</i> when $t = 1$ | [1] |
|-----|----------------------------|-----|
|     |                            | L J |

- (ii) Find an expression for the displacement of P from O at any time *t*. [4]
- (iii) Find the distance travelled by the particle before it returns to its initial position. [6]

## 6 Take g to be $10 \text{ m s}^{-2}$ in this question.

Two blocks are connected by a light inextensible string.

Block A has mass  $m_1$  kg and is held at rest on a smooth horizontal table.

Block B has mass  $m_2$  kg and is hanging vertically.

The string passes over a smooth pulley fixed at the end of the table as shown in **Fig. 3** below.



Fig. 3

When A is released from rest, the acceleration of B downwards is  $2 \text{ m s}^{-2}$ 

(i) Draw a diagram showing the external forces acting on A and B. [2]

(ii) Show that 
$$\frac{m_1}{m_2} = 4$$
 [5]

- 7 In two successive seconds, a car travels through 20 m and 15 m respectively. The car is travelling with uniform deceleration.
  - (i) Find the speed of the car at the start of the two seconds and its deceleration. [8]
  - (ii) Find after what further time the car will come to rest. [4]

8 A uniform rod AB of weight 20N and length 2m is smoothly hinged at A to a vertical wall. The rod is kept in a horizontal position by a light inextensible string BC which is 4m long. C is a point on the wall vertically above A as shown in **Fig. 4** below.



Fig. 4

- (i) Draw a diagram showing the external forces acting on the rod. [2]
- (ii) By taking moments about A, find the tension in the string. [5]
- (iii) Find the magnitude of the reaction at the wall. [6]
- (iv) If the string breaks when the tension in it is more than 150N, find the greatest weight that can be hung from B. [4]

## THIS IS THE END OF THE QUESTION PAPER