Rewarding Learning

ADVANCED
General Certificate of Education
January 2010

Mathematics

Assessment Unit M2
assessing
Module M2: Mechanics 2
[AMM21]

MONDAY 1 FEBRUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Answers should include diagrams where appropriate and marks may be awarded for them.
Take $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless specified otherwise.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 At time $t=0$ seconds a body, P , has a velocity of $2 \mathbf{i} \mathrm{~m} \mathrm{~s}^{-1}$ and is at a fixed point O . P has a constant acceleration of $(5 \mathbf{i}-\mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$
(i) Find the velocity of P when $t=2$
(ii) Find the direction in which P is travelling at this time.

2 A body of mass $M \mathrm{~kg}$ is projected vertically downwards at $u \mathrm{~m} \mathrm{~s}^{-1}$
When it has fallen a distance x metres, its speed is $3 u \mathrm{~m} \mathrm{~s}^{-1}$
Use the principle of conservation of mechanical energy to find x in terms of u and g.

3 The displacement of a particle from a fixed point O at any time t seconds is given by

$$
\begin{equation*}
\mathbf{r}=\left(t^{3} \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}\right) \mathrm{m} \tag{3}
\end{equation*}
$$

(i) Find the velocity of the particle when $t=3$
(ii) Find the speed of the particle when $t=3$
(iii) Find an expression for the acceleration of the particle at time t.
(iv) Explain why the acceleration of the particle is not constant.

4 Take g to be $10 \mathrm{~ms}^{-2}$ in this question.

A car of mass 800 kg can ascend a hill inclined at an angle $\sin ^{-1}\left(\frac{1}{64}\right)$ to the horizontal at a steady speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$
The resistance to motion is 275 N .
(i) Draw a diagram showing the external forces acting on the car.
(ii) Show that the power developed by the car's engine is 6 kW .

The car now travels down the same hill with the engine working at the same rate and against the same resistance.
(iii) Find the maximum speed of the car down the hill.

5 A smooth ring of mass 0.1 kg is threaded onto a light inelastic string.
The ends of the string are attached to two fixed points A and B, where A is 0.4 m vertically above B .
The ring is made to move in horizontal circles with centre B .
The angle between the string and AB is 30° as shown in Fig. 1 below.

Fig. 1
(i) Draw a diagram showing the external forces acting on the ring.
(ii) Find the tension in the string.
(iii) Find the angular velocity at which the ring is moving.
(iv) Find the time taken for the ring to complete one circle.

6 A particle, P , is projected from horizontal ground with speed $u \mathrm{~m} \mathrm{~s}^{-1}$ and at an angle θ to the horizontal.
(i) Show that the horizontal range of P is

$$
\begin{equation*}
\frac{u^{2} \sin 2 \theta}{\mathrm{~g}} \tag{6}
\end{equation*}
$$

A golfer strikes a ball so that its initial velocity $u \mathrm{~m} \mathrm{~s}^{-1}$ makes an angle of 27° with the horizontal. The range of the ball on the horizontal plane is 176.4 m .
(ii) Find u.
(iii) Find the greatest height of the ball above the horizontal.

7 A toy truck of mass 3 kg is travelling along a horizontal surface.
The truck's engine produces a forward force of 0.6 N .
The resistance to the motion of the truck is $9 v \mathrm{~N}$, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of the truck at any time t seconds.
(i) Show that the motion of the truck can be modelled by the differential equation.

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=0.2-3 v \tag{4}
\end{equation*}
$$

The truck starts from rest.
(ii) Show that

$$
\begin{equation*}
t=\frac{1}{3} \ln \left|\frac{0.2}{0.2-3 v}\right| \tag{8}
\end{equation*}
$$

(iii) Find v when $t=1$
(iv) State one further modelling assumption that you have made.

THIS IS THE END OF THE QUESTION PAPER

