

ADVANCED General Certificate of Education January 2010

Mathematics

Assessment Unit M2 assessing Module M2: Mechanics 2

[AMM21]

MONDAY 1 FEBRUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them. Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

- 1 At time t = 0 seconds a body, P, has a velocity of $2\mathbf{i} \,\mathrm{m} \,\mathrm{s}^{-1}$ and is at a fixed point O. P has a constant acceleration of $(5\mathbf{i} - \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-2}$
 - (i) Find the velocity of P when t = 2 [3]

[4]

[2]

- (ii) Find the direction in which P is travelling at this time.
- 2 A body of mass Mkg is projected vertically downwards at $u \,\mathrm{m \, s^{-1}}$ When it has fallen a distance x metres, its speed is $3u \,\mathrm{m \, s^{-1}}$ Use the principle of conservation of mechanical energy to find x in terms of u and g. [7]
- 3 The displacement of a particle from a fixed point O at any time *t* seconds is given by

$$\mathbf{r} = (t^3 \mathbf{i} + t^2 \mathbf{j} + t \mathbf{k}) \mathbf{m}$$

- (i) Find the velocity of the particle when t = 3 [3]
- (ii) Find the speed of the particle when t = 3
- (iii) Find an expression for the acceleration of the particle at time *t*. [2]
- (iv) Explain why the acceleration of the particle is not constant. [1]

www.StudentBounty.com Homework Help & Pastpapers

4 Take g to be 10 m s^{-2} in this question.

A car of mass 800 kg can **ascend** a hill inclined at an angle $\sin^{-1}(\frac{1}{64})$ to the horizontal at a steady speed of 15 m s⁻¹ The resistance to motion is 275 N.

(i)	Draw a diagram showing the external forces acting on the car.	[2]

(ii) Show that the power developed by the car's engine is 6 kW. [6]

The car now travels **down** the same hill with the engine working at the same rate and against the same resistance.

(iii) Find the maximum speed of the car **down** the hill. [4]

5 A smooth ring of mass 0.1 kg is threaded onto a light inelastic string. The ends of the string are attached to two fixed points A and B, where A is 0.4 m vertically above B.

The ring is made to move in horizontal circles with centre B.

The angle between the string and AB is 30° as shown in Fig. 1 below.

- (ii) Find the tension in the string. [2]
- (iii) Find the angular velocity at which the ring is moving. [7]
- (iv) Find the time taken for the ring to complete one circle. [2]

www.Studen

3	
entBounty.com	
lelp & Pastpapers	

Turn over

- 6 A particle, P, is projected from horizontal ground with speed $u \,\mathrm{m}\,\mathrm{s}^{-1}$ and at an angle θ to the horizontal.
 - (i) Show that the horizontal range of P is

$$\frac{u^2 \sin 2\theta}{g}$$
 [6]

A golfer strikes a ball so that its initial velocity $u \,\mathrm{m}\,\mathrm{s}^{-1}$ makes an angle of 27° with the horizontal. The range of the ball on the horizontal plane is 176.4 m.

(ii) Find *u*. [3]

(iii) Find the greatest height of the ball above the horizontal. [3]

- 7 A toy truck of mass 3 kg is travelling along a horizontal surface. The truck's engine produces a forward force of 0.6 N. The resistance to the motion of the truck is 9v N, where v m s⁻¹ is the speed of the truck at any time *t* seconds.
 - (i) Show that the motion of the truck can be modelled by the differential equation.

$$\frac{\mathrm{d}v}{\mathrm{d}t} = 0.2 - 3v \tag{4}$$

The truck starts from rest.

(ii) Show that

$$t = \frac{1}{3} \ln \left| \frac{0.2}{0.2 - 3\nu} \right|$$
[8]

- (iii) Find v when t = 1 [3]
- (iv) State one further modelling assumption that you have made. [1]

THIS IS THE END OF THE QUESTION PAPER