Rewarding Learning

ADVANCED
General Certificate of Education
January 2010

Mathematics

Assessment Unit C3
 assessing
 Module C3: Core Mathematics 3

[AMC31]

FRIDAY 15 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (a) Simplify as far as possible

$$
\begin{equation*}
\frac{x^{2}+x-12}{x^{2}-16} \div \frac{x-3}{x^{2}-4 x} \tag{5}
\end{equation*}
$$

(b) Express

$$
\frac{3 x+3}{(x-1)(x+2)}
$$

in partial fractions.

2 Use Simpson's rule with 5 ordinates to find an approximation for

$$
\begin{equation*}
\int_{0}^{4} \frac{1}{1+x^{3}} d x \tag{6}
\end{equation*}
$$

3 (a) Find the binomial expansion of

$$
\begin{equation*}
\sqrt{1-x^{2}} \tag{6}
\end{equation*}
$$

up to and including the term in x^{4}
(b) Find the exact values of x for which

$$
\begin{equation*}
|\ln x|=3 \tag{5}
\end{equation*}
$$

4 Fig. 1 below shows a sketch of the graph of the function $y=\mathrm{f}(x)$.

Fig. 1
On separate diagrams sketch the graphs of:
(i) $y=-\mathrm{f}(x+2)$;
(ii) $y=3 \mathrm{f}\left(\frac{1}{2} x\right)$
marking clearly the image of the point A on each sketch.

5 (a) Differentiate
(i) $\left(3 x^{2}-4\right)^{6}$
(ii) $\frac{\ln x}{x^{2}-1}$
(b) Find

$$
\begin{equation*}
\int\left(\frac{5}{x}-\cos 2 x+\operatorname{cosec}^{2} x-2 x\right) d x \tag{5}
\end{equation*}
$$

6 The temperature, H° centigrade, of the heating element in an electric heater, t seconds after it has been switched off, is given by

$$
H=10+60 \mathrm{e}^{-k t}
$$

where k is a constant.
(i) Find the initial temperature of the element.

The heating element takes 30 seconds to reach $20^{\circ} \mathrm{C}$.
(ii) Show that $k=0.0597$ to 3 significant figures.
(iii) Find the rate at which the temperature of the element is changing after 1 minute.

7 (a) Prove the identity:

$$
\begin{equation*}
\operatorname{cosec}^{2} \theta+\sec ^{2} \theta \equiv \operatorname{cosec}^{2} \theta \sec ^{2} \theta \tag{6}
\end{equation*}
$$

(b) Find the exact values of x given that

$$
3 \tan ^{2} x-5 \sec x+1=0
$$

where $-\pi<x \leqslant \pi$

8 Fig. 2 below shows a drawing of a capstan.

Fig. 2

Fig. 3 below shows the cross-section through a vertical plane containing the centre of the capstan.

Fig. 3
The outline of the cross-section can be modelled by the parametric equations

$$
x=3-\frac{1}{\sin \theta}, \quad y=2 \cos \theta
$$

(i) Find a corresponding Cartesian equation.
(ii) Hence or otherwise, find the coordinates of the point A at which the curve crosses the x-axis and write down the equation of the asymptote L.

