

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009

Mathematics

Assessment Unit S1 assessing Module S1: Statistics 1

AMS11

[AMS11]

MONDAY 1 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_a z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Peter is working on his biology coursework. The data for the heights of his sample of plant shoots are given in **Table 1** below.

Height (cm)	0–	10–	20-	30-	40-50
Frequency	6	17	34	13	5

[5]

Table 1	l
---------	---

Calculate the mean and standard deviation of Peter's data.

2 In a certain town 14% of the population is left-handed. Eight customers in a supermarket are chosen at random and asked if they are left-handed.

(i) Give two reasons why the binomial distribution would be suited to model this situation.	[2]
Find the probability:	
(ii) that exactly one customer is left-handed;	[2]
(iii) that at least three customers are left-handed.	[4]

3	The probability	distribution	of the random	variable X is s	hown in Tabl	e 2 below.
•	ine produoting	anounoaction	or the random		no min in incor	

Table 2

x	5	6	7	8	9	10	11	12
$\mathbf{P}(X=x)$	k	k	k	k	k	k	k	k
(i) Find <i>k</i>								
(ii) Explain why $E(X) = 8.5$								[1]
(iii) Find Var(<i>X</i>)								[4]
The random variable <i>Y</i> is related to <i>X</i> by $Y = 2X - 5$								
(iv) Find $E(Y)$ and $Var(Y)$								[3]
Footballer Paul is paid bonuses depending on the number of goals he scores. Last season Paul scored 21 goals in 35 games.								
Using a Poisson distribution, find the probability that:								
(i) he scores during a match;							[4]	
(ii) he scores either one or two goals during a match.							[3]	
Paul is paid a £1000 bonus if he scores either one or two goals during a match and a £5000 bonus if he scores three or more goals during a match.								

(iii) Find Paul's expected bonus per match.	[5]
---	-----

4

5 The masses of year 14 students at a large school are Normally distributed with mean μ kg and standard deviation 12 kg. Five per cent of students weigh more than 111.74 kg.

(i)	Show that $\mu = 92$	[4]
-----	----------------------	-----

Find the probability that a student chosen at random:

(ii) weighs less than 89 kg; [4]

[4]

(iii) weighs between 89 kg and 98 kg.

Eighty per cent of students weigh less than *W*kg.

(iv) Find W	[4]
	[+]

6 A continuous random variable, X, has the probability density function f(x) defined by

$$f(x) = \begin{cases} kx & 0 \le x \le 2\\ 2 - 2kx & 2 < x \le 3\\ 0 & \text{otherwise} \end{cases}$$

Fig. 1 below shows the graph of the function f(x)

Fig. 1

(i) Write down f(2) in terms of k [1]

(ii) Hence or otherwise show that $k = \frac{1}{3}$ [3]

- (iii) Using Fig. 1, or otherwise, find $P(1 \le X \le 3)$ [3]
- (iv) Using Fig. 1, or otherwise, find the median of X [5]

7 In a large school 8.2% of students study both Chemistry and French.One fifth of French students study Chemistry and one quarter of Chemistry students study French.

Find the probability that a student chosen at random:

(i)	studies French;	[2]
(ii)	studies Chemistry;	[2]
(iii)	studies neither French nor Chemistry.	[3]
A s	tudent does not study Chemistry.	
(iv)	Find the probability that the student studies French.	[5]

THIS IS THE END OF THE QUESTION PAPER

www.StudentBounty.com Homework Help & Pastpapers

S - 1/08 - 937-013-1

www.StudentBounty.com Homework Help & Pastpapers