Rewarding Learning

ADVANCED
General Certificate of Education 2009

Mathematics

Assessment Unit F3
assessing
Module FP3: Further Pure Mathematics 3
[AMF31]

FRIDAY 22 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated. You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Use the substitution $x=\frac{5}{2} \sin u$ to find

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{\sqrt{25-4 x^{2}}} \tag{6}
\end{equation*}
$$

2 Straight lines l_{1} and l_{2} have equations

$$
\begin{array}{ll}
l_{1} & \frac{x-3}{2}=\frac{y-p}{3}=\frac{z-1}{-1} \\
l_{2} & \frac{x-3}{1}=\frac{y+1}{-2}=\frac{z-4}{1}
\end{array}
$$

where p is a scalar constant.
The lines intersect at the point A.
Find the value of p and the coordinates of the point A .

3 (i) Show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\frac{1}{2}\left(\sin ^{-1} x+x \sqrt{1-x^{2}}\right)\right\}=\sqrt{1-x^{2}} \tag{4}
\end{equation*}
$$

(ii) Write $4 x-x^{2}-3$ in the form $a-(x-b)^{2}$
(iii) Hence find the exact value of

$$
\begin{equation*}
\int_{2}^{3} \sqrt{4 x-x^{2}-3} d x \tag{5}
\end{equation*}
$$

4 (i) Using the definition of the hyperbolic functions in terms of the exponential function, prove that

$$
\begin{equation*}
\cosh ^{2} 2 x+\sinh ^{2} 2 x \equiv \cosh 4 x \tag{4}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\cosh ^{2} 2 x+\sinh ^{2} 2 x=2
$$

leaving your answers in logarithmic form.

5 A plane Π passes through the points $\mathrm{A}(5,3,1), \mathrm{B}(-3,2,3)$ and $\mathrm{C}(2,3,2)$.
(i) Find $\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{BC}}$.
(ii) Hence or otherwise find in Cartesian form an equation for Π.

The perpendicular from the point $\mathrm{Q}(6,-6,4)$ to Π meets the plane at the point P .
(iii) Find the coordinates of P .
(iv) Show that the perpendicular distance from $Q(6,-6,4)$ to the plane is $2 \sqrt{14}$

6 (a) Find the coordinates of the stationary points on the curve with equation

$$
y=x-2 \sinh ^{-1} x
$$

and determine their nature.
(b) Evaluate

$$
\int_{-2}^{0} x-2 \sinh ^{-1} x \mathrm{~d} x
$$

correct to 2 decimal places.

7 (i) Differentiate with respect to x

$$
\begin{equation*}
\frac{x^{5}}{5}(\ln x)^{n} \tag{3}
\end{equation*}
$$

For each non-negative integer n, let

$$
\mathrm{I}_{n}=\int_{1}^{\mathrm{e}} x^{4}(\ln x)^{n} \mathrm{~d} x
$$

(ii) Using your answer to (i) or otherwise, show that if $n \geqslant 1$, then

$$
\begin{equation*}
\mathrm{I}_{n}=\frac{1}{5} \mathrm{e}^{5}-\frac{n}{5} \mathrm{I}_{n-1} \tag{5}
\end{equation*}
$$

The shaded region in Fig. 1 below is bounded by the curve with equation $y=x^{2} \ln x$, the line $x=\mathrm{e}$ and the x-axis.

Fig. 1

The region is rotated through 2π about the x-axis.
(iii) Show that the volume of the solid formed is $\frac{\pi}{125}\left[17 \mathrm{e}^{5}-2\right]$.

THIS IS THE END OF THE QUESTION PAPER

