

ADVANCED General Certificate of Education 2009

Mathematics

Assessment Unit F3 assessing Module FP3: Further Pure Mathematics 3

[AMF31]

FRIDAY 22 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_{e} z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Use the substitution $x = \frac{5}{2} \sin u$ to find

$$\int \frac{\mathrm{d}x}{\sqrt{25 - 4x^2}} \tag{6}$$

[8]

[1]

2 Straight lines l_1 and l_2 have equations

$$l_1 \qquad \frac{x-3}{2} = \frac{y-p}{3} = \frac{z-1}{-1}$$
$$l_2 \qquad \frac{x-3}{1} = \frac{y+1}{-2} = \frac{z-4}{1}$$

where *p* is a scalar constant. The lines intersect at the point A. Find the value of *p* and the coordinates of the point A.

3 (i) Show that

$$\frac{d}{dx} \left\{ \frac{1}{2} \left(\sin^{-1} x + x \sqrt{1 - x^2} \right) \right\} = \sqrt{1 - x^2}$$
 [4]

(ii) Write $4x - x^2 - 3$ in the form $a - (x - b)^2$

(iii) Hence find the exact value of

$$\int_{2}^{3} \sqrt{4x - x^{2} - 3} \, \mathrm{d}x \tag{5}$$

2 www.StudentBounty.com Homework Help & Pastpapers 4 (i) Using the definition of the hyperbolic functions in terms of the exponential function, prove that

$$\cosh^2 2x + \sinh^2 2x \equiv \cosh 4x \tag{4}$$

(ii) Hence solve the equation

$$\cosh^2 2x + \sinh^2 2x = 2$$

leaving your answers in logarithmic form.

- 5 A plane Π passes through the points A (5, 3, 1), B (-3, 2, 3) and C (2, 3, 2). (i) Find $\overrightarrow{AC} \times \overrightarrow{BC}$. [4]
 - (ii) Hence or otherwise find in Cartesian form an equation for Π . [3]

The perpendicular from the point Q(6, -6, 4) to Π meets the plane at the point P.

5]	
)	

- (iv) Show that the perpendicular distance from Q(6, -6, 4) to the plane is $2\sqrt{14}$ [2]
- 6 (a) Find the coordinates of the stationary points on the curve with equation

$$y = x - 2\sinh^{-1}x$$

and determine their nature.

(b) Evaluate

$$\int_{-2}^{0} x - 2\sinh^{-1} x \, \mathrm{d}x$$

correct to 2 decimal places.

[Turn over

[4]

[7]

[7]

7 (i) Differentiate with respect to x

$$\frac{x^5}{5} (\ln x)^n \tag{3}$$

For each non-negative integer n, let

$$\mathbf{I}_n = \int_1^e x^4 \left(\ln x\right)^n \mathrm{d}x$$

(ii) Using your answer to (i) or otherwise, show that if $n \ge 1$, then

$$I_n = \frac{1}{5}e^5 - \frac{n}{5}I_{n-1}$$
 [5]

The shaded region in **Fig. 1** below is bounded by the curve with equation $y = x^2 \ln x$, the line x = e and the *x*-axis.

Fig. 1

The region is rotated through 2π about the *x*-axis.

(iii) Show that the volume of the solid formed is $\frac{\pi}{125}[17e^5 - 2]$. [7]

THIS IS THE END OF THE QUESTION PAPER