Rewarding Learning
ADVANCED
General Certificate of Education 2009

Mathematics

Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

FRIDAY 19 JUNE, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Express

$$
\begin{equation*}
\frac{1}{\left(2 x^{2}+3\right)(x-1)} \tag{5}
\end{equation*}
$$

in partial fractions.

2 Find in radians the general solution of the equation

$$
\begin{equation*}
\sqrt{3} \sin \theta-\cos \theta=\sqrt{2} \tag{7}
\end{equation*}
$$

3 Show that the sum of the series

$$
\begin{equation*}
1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3} \tag{7}
\end{equation*}
$$

is given by $n^{2}\left(2 n^{2}-1\right)$.

4 Given that one of the roots of

$$
z^{3}-z^{2}+3 z+5=0
$$

is $z=1-2 \mathrm{i}$, find the other 2 roots and plot all 3 roots on an Argand diagram.

5 If

$$
u_{1}=7 \text { and } u_{n+1}=3 u_{n}-2
$$

prove by the method of mathematical induction that

$$
\begin{equation*}
u_{n}=2\left(3^{n}\right)+1, \text { where } n \in \mathbb{Z}^{+} \tag{6}
\end{equation*}
$$

6 Solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=36 \mathrm{e}^{-3 x} \tag{11}
\end{equation*}
$$

given that $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$ when $x=0$

7 (i) Using Maclaurin's theorem, derive a series expansion of $\sin \theta$ up to and including the term in θ^{5}
(ii) Using de Moivre's theorem, show that

$$
\begin{equation*}
\sin 3 \theta \equiv 3 \sin \theta-4 \sin ^{3} \theta \tag{5}
\end{equation*}
$$

(iii) Hence, find a series expansion for $\sin ^{3} \theta$ up to and including the terms in θ^{5}

Please turn over for Question 8

8 The parabola $y^{2}=8 x$ is shown in Fig. 1 below.
F is the focus and P a point on the parabola. The normal to the parabola at P cuts the x-axis at G , and PP^{\prime} is a line parallel to the x-axis.

Fig. 1
(i) Write down the co-ordinates of F
(ii) Verify that the point P is given parametrically by $\left(2 t^{2}, 4 t\right)$.
(iii) Show that the equation of the normal PG is given by

$$
\begin{equation*}
y+t x=2 t^{3}+4 t \tag{6}
\end{equation*}
$$

(iv) Show that FP $=\mathrm{FG}$
(v) Prove that $\widehat{\mathrm{FPG}}=\mathrm{GPP}^{\prime}$

This proves that light rays parallel to the axis of a parabolic mirror illuminate the focus.

