ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2009

Mathematics

Assessment Unit F1
assessing
Module FP1: Further Pure Mathematics 1
[AMF11]

TUESDAY 23 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all six questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that
$\ln z \equiv \log _{\mathrm{e}} z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (a) Describe the transformation given by the matrix

$$
\mathbf{Q}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \tag{2}\\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

(b) The matrix $\mathbf{S}=\left(\begin{array}{cc}-1 & 1 \\ 6 & -2\end{array}\right)$ represents a linear transformation of the $x-y$ plane.

Find the equations of the straight lines through the origin O which are invariant under the transformation given by \mathbf{S}.

2 Let $\mathbf{M}=\left(\begin{array}{ll}-1 & 1 \\ -2 & 4\end{array}\right)$ and $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(i) Show that $\mathbf{M}^{2}=3 \mathbf{M}+2 \mathbf{I}$.
(ii) Hence, or otherwise, express the matrix \mathbf{M}^{4} in the form $\alpha \mathbf{M}+\beta \mathbf{I}$ where α, β are integers.

3 A binary operation * is defined on the set of all ordered pairs (x, y) of real numbers, where $x \neq 0, y \neq 0$

The operation is given as $(a, b) *(c, d)=(a d+b c, b d)$
(i) Show that $*$ is associative.
(ii) Find the identity element.
(iii) Find the inverse of (a, b).

4 The matrix \mathbf{N} is given by $\left(\begin{array}{ccc}2 & 0 & -6 \\ 3 & 1 & 4 \\ -1 & 0 & 1\end{array}\right)$
(i) Show that $\lambda=4$ is one of the eigenvalues of \mathbf{N} and find the other two eigenvalues.
(ii) Find a unit eigenvector corresponding to $\lambda=4$

5 (a) Find all the real values of a, b such that

$$
\begin{equation*}
(a+b \mathrm{i})^{2}=21-20 \mathrm{i} \tag{8}
\end{equation*}
$$

(b) (i) Sketch on an Argand diagram the locus of all points z such that

$$
\begin{equation*}
|z-\sqrt{3}-i|=\sqrt{2} \tag{3}
\end{equation*}
$$

(ii) Hence, or otherwise, show that for all points z on the locus

$$
\begin{equation*}
\arg z \leqslant \frac{5 \pi}{12} \tag{5}
\end{equation*}
$$

6 The circle C_{1} has equation

$$
\begin{equation*}
x^{2}+y^{2}+2 x-14 y+40=0 \tag{6}
\end{equation*}
$$

(i) Find the equation of the tangent to the circle C_{1} at the point $(2,6)$.
(ii) Find the equation of the other tangent from the origin to the circle C_{1}

The circle C_{2} has equation

$$
x^{2}+y^{2}-10 x-8 y+16=0
$$

(iii) Find the points of intersection of the circles C_{1} and C_{2}

