Rewarding Learning
ADVANCED
General Certificate of Education 2009

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4

[AMC41]

WEDNESDAY 20 MAY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 A bowl is formed by rotating through 2π radians about the x-axis, the arc of the curve

$$
y=\sqrt{5 x}
$$

between $x=0$ and $x=a$, where a is a positive constant.
The bowl is full of water.
Find the volume of water in the bowl.

2 Two points A and B have coordinates $(1,3,4)$ and $(3,-2,0)$ respectively.
(i) Find the distance between A and B.
(ii) Find the vector equation of the line that passes through A and B.
(iii) Show that the point $(5,-7,-4)$ lies on this line.

3 Using the substitution $u=1+x$, find the exact value of

$$
\begin{equation*}
\int_{-1}^{0} x(1+x)^{\frac{1}{2}} \mathrm{~d} x \tag{8}
\end{equation*}
$$

4 (a) Without using your calculator, find the exact value of $\tan 2 A$ given that $\tan A=\frac{1}{7}$ and that A is acute.
(b) Solve the equation

$$
\begin{equation*}
3 \cos \theta=\sin \left(\theta+30^{\circ}\right) \tag{7}
\end{equation*}
$$

where $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$

5 The functions f and g are defined as:

$$
\begin{array}{ll}
\mathrm{f}: x \rightarrow 3 x+1 & x \in \mathbb{R} x>2 \\
\mathrm{~g}: x \rightarrow \frac{1}{x} & x \in \mathbb{R} x>0
\end{array}
$$

(i) State the range of f
(ii) Find the composite function gf and state its domain and range.

6 (i) Show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x}{1+x}\right)=\frac{1}{(1+x)^{2}} \tag{4}
\end{equation*}
$$

(ii) A curve has the equation

$$
\frac{x}{1+x}-x^{2}+\frac{y}{1+y}=0
$$

Find the gradient of the curve at the point $(1,1)$

7 Given the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y}{x+1}
$$

and that $x=1$ when $y=16$, express y in terms of x

8 Find
(i) $\int_{0}^{2} x \mathrm{e}^{-x} \mathrm{~d} x$
(ii) $\int \sin ^{3} x \mathrm{~d} x$

