Rewarding Learning
ADVANCED
General Certificate of Education 2009

Mathematics

Assessment Unit C3
assessing
Module C3: Core Mathematics 3

[AMC31]

THURSDAY 28 MAY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Differentiate:
(i) $\frac{x}{4-x^{2}}$
(ii) $\left(x^{2}+3\right)^{5}$

2 (a) Find the term in x^{3} in the binomial expansion of

$$
\begin{equation*}
(1+2 x)^{-1} \tag{4}
\end{equation*}
$$

(b) Express $\frac{6 x-4}{(2 x-1)^{2}}$ in partial fractions.

3 (a) A slide in an adventure playground can be modelled by the curve

$$
y=1+20 \mathrm{e}^{-x}
$$

between $x=1$ and $x=10$ as shown in Fig. 1 below.

Fig. 1

Find the shaded area.
(b) Find

$$
\begin{equation*}
\int\left(\frac{3}{x}-\frac{x}{5}+\sec 2 x \tan 2 x+7\right) \mathrm{d} x \tag{5}
\end{equation*}
$$

4 The graph of a function $y=\mathrm{f}(x)$ is sketched below in Fig. 2.

Fig. 2

On separate diagrams sketch the graphs of:
(i) $y=3 f\left(\frac{1}{2} x\right)$
(ii) $y=4-\mathrm{f}(x)$
indicating the coordinates of the images of the point A .

5 (i) Show that the equation $2-\ln x=x^{2}$ has a solution between $x=1$ and $x=2$
(ii) By taking $x=1$ as a first approximation and using the Newton-Raphson method twice, find a better approximation to the solution of the equation $2-\ln x=x^{2}$

6 A particle travels in a straight line in such a way that its distance x metres from a fixed point O at time t seconds can be given by the equation

$$
\begin{equation*}
x=4+\sqrt{3} \sin 2 t+\cos 2 t \tag{1}
\end{equation*}
$$

(i) Find the initial distance of the particle from O .
(ii) Find the rate of change of the distance of the particle from O at time t.
(iii) Hence find the first time when the particle is at its greatest distance from O .

7 (a) Solve the equation

$$
\sec \left(2 \theta-30^{\circ}\right)=-\frac{2}{\sqrt{3}}
$$

$$
\begin{equation*}
\text { for }-180^{\circ}<\theta<180^{\circ} \tag{7}
\end{equation*}
$$

(b) Prove the identity

$$
\begin{equation*}
\left(\operatorname{cosec}^{2} \theta-1\right)\left(\tan ^{2} \theta+1\right) \equiv \operatorname{cosec}^{2} \theta \tag{7}
\end{equation*}
$$

8 Find the equation of the normal to the curve

$$
y=x^{2} \ln (3 x-2)+5
$$

at the point on the curve where $x=1$

