Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2009

Mathematics

Assessment Unit C2
assessing
Module C2: AS Core Mathematics 2
[AMC21]
FRIDAY 22 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (a) (i) Simplify $x\left(3 x^{2}+2+4 x^{-3}\right)$
(ii) Hence, integrate with respect to x

$$
\begin{equation*}
x\left(3 x^{2}+2+4 x^{-3}\right) \tag{4}
\end{equation*}
$$

(b) Using the trapezium rule with 6 ordinates, find an approximate value for

$$
\begin{equation*}
\int_{0}^{1} \frac{4}{\left(1+x^{2}\right)} \mathrm{d} x \tag{6}
\end{equation*}
$$

2 (i) A sequence is defined recursively by

$$
\begin{equation*}
u_{n+1}=\frac{2}{3} u_{n} \quad \text { where } u_{1}=1 \tag{3}
\end{equation*}
$$

Find u_{2}, u_{3} and u_{4}
(ii) State whether this sequence is convergent or divergent.

A geometric series is formed by adding the terms of the sequence to give

$$
\begin{equation*}
1+\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\ldots \tag{1}
\end{equation*}
$$

(iii) Find the common ratio of this geometric series.
(iv) Find the sum to infinity of this geometric series.

3 In the binomial expansion of $(1+n x)^{10}$, the coefficient of x^{2} is 3 times the coefficient of x.
Find the value of n, where $n \neq 0$

4 (i) On the same diagram, sketch the curves $y=2^{x}$ and $y=1+2^{x}$. Label any relevant points on the axes.

The y coordinate of a point P on the curve $y=1+2^{x}$ is 6
(ii) By solving the equation

$$
1+2^{x}=6
$$

find the x coordinate of P .
[A solution by trial and improvement is not acceptable]

5 (a) Prove the identity

$$
\begin{equation*}
\tan \theta+\frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta} \tag{5}
\end{equation*}
$$

(b) Solve the equation

$$
\begin{equation*}
\sin ^{2} x=\frac{1}{4} \tag{4}
\end{equation*}
$$

for $-90^{\circ}<x \leqslant 90^{\circ}$
(c) Solve the equation

$$
\cos 2 x=0.4
$$

$$
\begin{equation*}
\text { for } 0<x \leqslant \pi \tag{4}
\end{equation*}
$$

6 Shown in Fig. 1 below is the curve $y=4+x^{2}$

Fig. 1
(i) Find the area of the region bounded by the curve $y=4+x^{2}$, the x-axis, y-axis and the line $x=1$
(ii) Hence, find the area of the region bounded by the curve $y=4+x^{2}$ and the line $y=5$ [4]

7 The network coverage of a mobile phone mast M may be modelled as a circle as shown in Fig. 2 below.

Fig. 2

Points $\mathrm{A}(2,1), \mathrm{B}(k, k+5)$ and $\mathrm{C}(-1,-1)$ lie on the circumference of the circle, centre M . AB is a diameter of the circle.
(i) Find the gradient of AC.
(ii) Hence, write down the gradient of BC and prove that $k=-3$
(iii) Find the equation of the circle in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{5}
\end{equation*}
$$

8 A silver medal is divided into two parts by a line $A B$.
The medal is in the shape of a circle, centre O, as shown in Fig. 3 below.

Fig. 3

The radius of the circle is r and the angle AOB is x radians.
(i) Write down the area of the minor sector OAB.
(ii) Write down the area of the triangle AOB.

The areas of the two parts of the medal divided by the line AB are in the ratio 5:1
(iii) Show that

$$
\begin{equation*}
\sin x=x-\frac{\pi}{3} \tag{8}
\end{equation*}
$$

