GCE AS

Mathematics

January 2009

Mark Schemes

NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE)

MARK SCHEMES (2009)

Foreword

Introduction

Mark Schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes teachers and students will be able to see what examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of 16- and 18-year-old students in schools and colleges. The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes therefore are regarded as a part of an integral process which begins with the setting of questions and ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. What is published represents this final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example, where there is no absolute correct response - all teachers will be familiar with making such judgements.

The Council hopes that the mark schemes will be viewed and used in a constructive way as a further support to the teaching and learning processes.

CONTENTS
Page
Module C1 1
Module C2 7
Module FP1 13
Module M1 23
Module S1 29

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education January 2009

Mathematics

Assessment Unit C1
 assessing
 Module C1: AS Core Mathematics 1

[AMC11]

WEDNESDAY 7 JANUARY, AFTERNOON

MARK
 SCHEME

GCE Advanced/Advanced Subsidiary (AS) Mathematics

Mark Schemes

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters \mathbf{M}, \mathbf{W} and $\mathbf{M W}$ as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
W indicates marks for working.
MW indicates marks for combined method and working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).
$1 \quad m_{\mathrm{AB}}=\frac{-1-7}{-3-1}=\frac{-8}{-4}=2$
$m^{\perp}=-\frac{1}{2}$
$=$ mid point $(-1,3)$
$(y-3)=-\frac{1}{2}(x+1)$
$2 y+x=5$

2 (a) (i)

(ii)

(b) (i) $\begin{array}{ll}{\left[(x+3)^{2}-9\right]-1} & \text { MW1 } \\ (x+3)^{2}-10 & \text { MW1 }\end{array}$
(ii) Min value $=-10$ when $x=-3$

MW2
(iii) $x>-3$

3 (a) $\frac{\sqrt{7}+1}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$

$$
\frac{3 \sqrt{7}+7+3+\sqrt{7}}{9-7}=\frac{10+4 \sqrt{7}}{2}=5+2 \sqrt{7}
$$

(b) (i) $\mathrm{f}(2)=16+4-26+6=0$
(ii) $\frac{2 x^{2}+5 x-3}{x - 2 \longdiv { 2 x ^ { 3 } + x ^ { 2 } - 1 3 x + 6 }}$

$$
\begin{aligned}
& \frac{2 x^{2}-4 x^{2}}{5 x^{2}}-13 x \\
& \frac{5 x^{2}-10 x}{-3 x+6} \\
& \frac{-3 x+6}{0}
\end{aligned}
$$

$$
(x-2)\left(2 x^{2}+5 x-3\right)=(x-2)(2 x-1)(x+3)
$$

$$
\text { (iii) }(x-2)(2 x-1)(x+3)=0 \quad \text { M1 }
$$

$$
x=2 \quad x=\frac{1}{2} x=-3
$$

4 (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=5-6 x^{-3}+2 x^{-\frac{1}{2}}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=5-\frac{6}{x^{3}}+\frac{2}{\sqrt{x}}
$$

(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-8 x$

$$
\begin{array}{lr}
\text { At } x=3 \quad \operatorname{grad}=54-24=30 & \text { MW1 } \\
\text { Normal grad }=\frac{-1}{30} & \text { MW1 } \\
\text { At } x=3 \quad y=54-36+9=27 & \text { MW1 } \\
(y-27)=\frac{-1}{30}(x-3) & \text { M1W1 }
\end{array}
$$

5 (i) $\mathrm{V}=x^{2} h=500 \mathrm{~m}^{3}$

$$
h=\frac{500}{x^{2}}
$$

(ii) $A=x^{2}+4 x h$
$A=x^{2}+4 x\left(\frac{500}{x^{2}}\right)=x^{2}+\left(\frac{2000}{x}\right)$
(iii) $\frac{\mathrm{d} A}{\mathrm{~d} x}=2 x-2000 x^{-2}$
$2 x=\frac{2000}{x^{2}}$
$x^{3}=1000$
$x=10$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2+4000 x^{-3}$
$x=10 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6+\mathrm{ve}$ so minimum
Dimensions $10 \mathrm{~m} \times 10 \mathrm{~m} \times 5 \mathrm{~m}$

6 (i) $b^{2}-4 a c=(k-2)^{2}-8 k$
(ii) $(k-2)^{2}-8 k>0$
$k^{2}-4 k+4-8 k>0$

If $k^{2}-12 k+4=0$
$k=\frac{12 \pm \sqrt{144-16}}{2}$
$k=\frac{12 \pm \sqrt{128}}{2}=\frac{12 \pm 8 \sqrt{2}}{2}=6 \pm 4 \sqrt{2}$

$k<6-4 \sqrt{2}$ or $k>6+4 \sqrt{2}$
$2 x-2000 x^{-2}=0$

7 (i) $t=\frac{75}{v}$
(ii) $\frac{75}{v}-\frac{5}{4}=\frac{75}{v+5}$

$$
\begin{aligned}
(300-5 v)(v+5) & =75 \times 4 v \\
300 v+1500-5 v^{2}-25 v & =300 v \\
5 v^{2}+25 v-1500 & =0 \\
v^{2}+5 v-300 & =0
\end{aligned}
$$

M1W2
(iii) $(v-15)(v+20)=0$
$v=15 \mathrm{~km} \mathrm{~h}^{-1}$
W1
$8 \quad\left(3^{3}\right)^{x} \times\left(3^{2}\right)^{y+3}=3 \times 3^{\frac{1}{2}}$

$$
\begin{array}{rlrl}
3^{3 x} \times 3^{2 y+6} & =3^{\frac{3}{2}} & \text { MW1 } \\
3^{3 x+2 y+6} & =3^{\frac{3}{2}} & & \text { MW1 } \\
3 x+2 y+6 & =\frac{3}{2} & \mathrm{M} 1 \\
3 x+2 y & =\frac{-9}{2} & \mathrm{~W} 1 \\
6 x+4 y & =-9 & \\
12 x-9 y & =33 & \mathrm{M} 1 \\
12 x+8 y & =-18 & \mathrm{~W} 1 \\
\hline-17 y & =51 & \mathrm{~W} 1
\end{array}
$$

ADVANCED SUBSIDIARY (AS)
General Certificate of Education January 2009

Mathematics

Assessment Unit C2

assessing
Module C2: Core Mathematics 2
[AMC21]

THURSDAY 15 JANUARY, MORNING

MARK
 SCHEME

GCE Advanced/Advanced Subsidiary (AS) Mathematics

Mark Schemes

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{W} and $\mathbf{M W}$ as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method
W indicates marks for working.
MW indicates marks for combined method and working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidates's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

1

(i) $\mathrm{BC}^{2}=9^{2}+6^{2}-2(9)(6) \cos 39^{\circ}$
$\mathrm{BC}^{2}=33.0682 \ldots$.
$\mathrm{BC}=5.75 \mathrm{~cm}$
(ii) $\frac{\sin 39^{\circ}}{5.75}=\frac{\sin C}{6}$
$\sin \mathrm{C}=\frac{6 \sin 39^{\circ}}{5.75}$
Angle C $=41.0^{\circ}$

2 (a) $\int 3-2 \sqrt{x}+3 x^{-2} \mathrm{~d} x$

$$
\begin{aligned}
& =3 x-\frac{2 x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{3 x^{-1}}{-1}+c \\
& =3 x-\frac{4}{3} \sqrt{x^{3}}-3 x^{-1}+\mathrm{c}
\end{aligned}
$$

(b)

x	y
0	1.000
$\frac{1}{2}$	1.414
1	2.000
$1 \frac{1}{2}$	2.828
2	4.000

x values, y values
$\int=\frac{1}{2} h\left(y_{0}+2\left(y_{1}+y_{2}+y_{3}\right)+y_{4}\right)$
$\int=\frac{1}{2} \times \frac{1}{2}(1.000+2(1.414+2.000+2.828)+4.000)$
MW1M1

3 (i) $x^{2}+y^{2}+8 x-2 y-9=0$
Centre $(-4,1)$
Radius $=\sqrt{4^{2}+1^{2}+9}=\sqrt{26}=5.10$
M1W1
(ii) $(-5)^{2}+(-4)^{2}+8(-5)-2(-4)-9=0$
$25+16-40+8-9=0$
W1
(iii) Gradient of radius $=\frac{1-(-4)}{-4-(-5)}=\frac{5}{1}=5$

Gradient of tangent at $(-5,-4)=\frac{-1}{5}$
$y-(-4)=\frac{-1}{5}(x-(-5))$
$5 y+20=-x-5$
$5 y+x+25=0$
W1

4 (a) (i) $\left(1+\frac{1}{2} x\right)^{10}=1+10\left(\frac{1}{2} x\right)+\frac{10.9}{2.1}\left(\frac{1}{2} x\right)^{2}+\frac{10.9 .8}{3.2 .1}\left(\frac{1}{2} x\right)^{3}$

$$
=1+5 x+11.25 x^{2}+15 x^{3}
$$

(ii) $\left(1+\frac{1}{2} x\right)^{10}=1+5(0.01)+11.25(0.01)^{2}+15(0.01)^{3}$

$$
\begin{aligned}
& =1+0.05+0.001125+0.000015 \\
& =1.05114
\end{aligned}
$$

(b) (i) $u_{10}=225+9(50)=£ 675$

M1W1
(ii) $S_{20}=\frac{1}{2}(20)\{2(225)+19(50)\}$

M1W1
W1
(iii) Brad's savings $S=\frac{1}{2}(20)\{2 P+19(60)\}$

$$
\begin{aligned}
10(2 P+1140) & =14000 \\
2 P+1140 & =1400 \\
2 P & =260 \\
P & =130
\end{aligned}
$$

5 (i) $5-2 \cos \theta-8 \sin ^{2} \theta=$
$5-2 \cos \theta-8\left(1-\cos ^{2} \theta\right)$
$=5-2 \cos \theta-8+8 \cos ^{2} \theta$
$=8 \cos ^{2} \theta-2 \cos \theta-3$
(ii) $8 \cos ^{2} \theta-2 \cos \theta-3=0 \quad$ M1
$(4 \cos \theta-3)(2 \cos \theta+1)=0$ M1
$4 \cos \theta=3 \quad$ or $2 \cos \theta=-1$

$$
\begin{array}{rlrlrl}
\cos \theta & =0.75 & \text { or } & \cos \theta & =-0.5 \\
\theta & =41.4^{\circ} \text { or } & \theta & =120^{\circ}
\end{array}
$$

6 (i) Length of major arc $\mathrm{CD}=r \theta=4 \times \frac{5 \pi}{3}=\frac{20 \pi}{3}=20.9 \mathrm{~m}$
Total perimeter $=25+21+21+20.94=87.9 \mathrm{~m}$
(ii) Area of major sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2}(4)^{2} \times \frac{5 \pi}{3}$

$$
=\frac{40 \pi}{3}=41.9
$$

$$
\begin{aligned}
\text { Area of a triangle } & =\frac{1}{2} a b \sin C=\frac{1}{2}(25)(25) \sin \frac{\pi}{3} & & \text { M1 } \\
& =271 & & \text { W1 }
\end{aligned}
$$

Total area $=41.9+271=313 \mathrm{~m}^{2}$

7 (i) $3 x-x^{2}=x^{2}$

$$
3 x-2 x^{2}=0
$$

$$
x(3-2 x)=0 \quad \text { MW1 }
$$

$$
x=0 \quad \text { or } \quad x=1 \frac{1}{2}
$$

A has x coordinate $1 \frac{1}{2}$
(ii) Area $=\int_{0}^{1 \frac{1}{2}}\left(\left(3 x-x^{2}\right)-\left(x^{2}\right)\right) \mathrm{d} x$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1 \frac{1}{2}}\left(3 x-2 x^{2}\right) \mathrm{d} x \\
& =\left[\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}\right]_{0}^{1 \frac{1}{2}} \\
& =\left[\frac{27}{8}-\frac{9}{4}\right]-[0-0] \\
& =\frac{9}{8}=1.125=1.13
\end{aligned}
$$

$8 \quad \log _{x} 9=\frac{\log _{3} 9}{\log _{3} x}$

$$
\log _{x} 9=\frac{2}{\log _{3} x}
$$

$$
\frac{2}{\log _{3} x}=2 \log _{3} x+3
$$

$$
\text { Let } y=\log _{3} x
$$

$$
\frac{2}{y}=2 y+3
$$

$$
2=2 y^{2}+3 y
$$

$$
0=2 y^{2}+3 y-2
$$

$$
(2 y-1)(y+2)=0
$$

$$
y=\frac{1}{2} \quad \text { or } \quad y=-2
$$

MW1
$\log _{3} x=\frac{1}{2} \quad$ or $\log _{3} x=-2$

$$
x=\sqrt{3} \text { or } \quad x=\frac{1}{9}
$$

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2009

Mathematics

Assessment Unit F1

assessing
Module FP1: Further Pure Mathematics 1
[AMF11]

TUESDAY 13 JANUARY, MORNING

MARK SCHEME

GCE Advanced/Advanced Subsidiary (AS) Mathematics

Mark Schemes

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters \mathbf{M}, \mathbf{W} and MW as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
W indicates marks for working.
MW indicates marks for combined method and working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

1 (i) $\quad \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
$\Rightarrow\left|\begin{array}{cc}10-\lambda & 6 \\ 3 & 3-\lambda\end{array}\right|=0$
$\Rightarrow(10-\lambda)(3-\lambda)-18=0$
$\Rightarrow 30-13 \lambda+\lambda^{2}-18=0$
$\Rightarrow \lambda^{2}-13 \lambda+12=0$
$\Rightarrow(\lambda-12)(\lambda-1)=0$
$\Rightarrow \lambda=1,12$
(ii) $\left(\begin{array}{cc}10 & 6 \\ 3 & 3\end{array}\right)\binom{x}{y}=1\binom{x}{y}$
$\Rightarrow 10 x+6 y=x \quad \Rightarrow 9 x+6 y=0$
and $3 x+3 y=y \quad \Rightarrow 3 x+2 y=0$
Hence $y=-\frac{3}{2} x$
Therefore an eigenvector is $\binom{2}{-3}$

2 (i) Reflection in the x-axis
(ii) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}2 & 4 \\ -3 & 0\end{array}\right)=\left(\begin{array}{cc}-1 & 4 \\ -5 & -4\end{array}\right)$

$$
\begin{array}{lll}
\Rightarrow 2 a-3 b=-1 & 2 c-3 d=-5 & \text { M1 } \\
\text { and } 4 a=4 & 4 c=-4 & \text { M1 } \\
\text { Hence } a=1 & \text { Hence } c=-1 & \\
\text { and } 2-3 b=-1 & \text { and }-2-3 d=-5 & \text { W1 } \\
\Rightarrow b=1 & d=1 & \text { W1 }
\end{array}
$$

Hence $\mathbf{M}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$
(iii)

y		Area of triangle OPQ $\begin{aligned} & =\frac{1}{2} \times 4 \times 3 \\ & =6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { W1 } \end{aligned}$
		$\begin{aligned} & \text { Area of OP'Q' } \\ & =\operatorname{det} \mathrm{M} \times \text { Area of OPQ } \\ & =2 \times 6 \\ & =12 \end{aligned}$	M1 W1
0		x	

(iv) $S=N M$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

$\mathrm{P}(2,-3)$

3 (i) $\left|\begin{array}{rrr}2 & 4 & 2 \\ \lambda & 12 & 5 \\ 1 & 8 & \lambda\end{array}\right|=2(12 \lambda-40)-4\left(\lambda^{2}-5\right)+2(8 \lambda-12)$
$=24 \lambda-80-4 \lambda^{2}+20+16 \lambda-24$
$=-4 \lambda^{2}+40 \lambda-84$
(ii) $\operatorname{det} \mathbf{T} \neq 0$

Hence
$4 \lambda^{2}-40 \lambda+84=0$
$\Rightarrow \lambda^{2}-10 \lambda+21=0$
$\Rightarrow(\lambda-7)(\lambda-3)=0$
$\lambda=3,7$
Inverse will exist if $\lambda \neq 3, \lambda \neq 7$
(iii) If $\lambda=2$, then $\mathbf{T}=\left(\begin{array}{rrr}2 & 4 & 2 \\ 2 & 12 & 5 \\ 1 & 8 & 2\end{array}\right)$

Matrix of minors $=\left(\begin{array}{rrr}-16 & -1 & 4 \\ -8 & 2 & 12 \\ -4 & 6 & 16\end{array}\right)$
Matrix of cofactors $=\left(\begin{array}{rrr}-16 & 1 & 4 \\ 8 & 2 & -12 \\ -4 & -6 & 16\end{array}\right)$

Determinant $=-16+80-84=-20$

Hence inverse $=-\frac{1}{20}\left(\begin{array}{rcc}-16 & 8 & -4 \\ 1 & 2 & -6 \\ 4 & -12 & 16\end{array}\right)$
(iv) If $\lambda=3$, the equations become

$$
\begin{aligned}
& 2 x+4 y+2 z=\mu \\
& 3 x+12 y+5 z=7 \\
& x+8 y+3 z=6
\end{aligned}
$$

(2)- (1) gives $x+8 y+3 z=7-\mu$

This must be the same as (3) for solutions to exist.
Hence $7-\mu=6$ which gives $\mu=1$

4 (i) $\quad\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right)$
$=\left(\begin{array}{cc}1 & 0 \\ x+y & 1\end{array}\right)$
W1
which is of the same form as the original matrix and therefore multiplication is closed for \mathbf{S}
(ii) The matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity for matrix multiplication and is a member of \mathbf{S} where $x=0$
(iii) Inverse $=\frac{1}{1}\left(\begin{array}{cc}1 & 0 \\ -x & 1\end{array}\right)$

$$
=\left(\begin{array}{cc}
1 & 0 \\
(-x) & 1
\end{array}\right)
$$

(iv) Since we can assume the associative law and we have proved closure, identity and inverse conditions, then \mathbf{S} forms a group.
$5 x^{2}+y^{2}+6 y-16=0$
$x^{2}+y^{2}-24 x-12 y+80=0$
Subtract to give $24 x+18 y-96=0$
$\Rightarrow 4 x+3 y=16$
$\Rightarrow x=\frac{16-3 y}{4}$
Substitute into equation (1) to give
$\left(\frac{16-3 y}{4}\right)^{2}+y^{2}+6 y-16=0$
$\Rightarrow(16-3 y)^{2}+16 y^{2}+96 y-256=0$
$\Rightarrow 256-96 y+9 y^{2}+16 y^{2}+96 y-256=0$
$\Rightarrow 25 y^{2}=0$
$\Rightarrow y=0$
$\Rightarrow x=4$
Therefore the point of intersection is $(4,0)$

Since there is only one point of intersection the circles touch
The centres of the circles are $(0,-3)$ and $(12,6)$
The point of intersection $(4,0)$ lies between these two centres and hence the circles must touch externally

6
(a) (i) $\frac{z_{1}}{z_{2}}=\frac{10+5 \mathrm{i}}{2-\mathrm{i}} \times \frac{2+\mathrm{i}}{2+\mathrm{i}}$

$$
\begin{align*}
& =\frac{20+20 \mathrm{i}-5}{4+1} \tag{W2}\\
& =\frac{15+20 \mathrm{i}}{5} \\
& =3+4 \mathrm{i}
\end{align*}
$$

(ii) $|3+4 i|=\sqrt{3^{2}+4^{2}}$

Hence modulus $=5$
$\arg (3+4 i)=\tan ^{-1}\left(\frac{4}{3}\right)$
Hence argument $=53.1^{\circ}$
(b) (i) Perpendicular bisector of the line joining $(10,5)$ and $(2,-1)$ MW3
(ii) Circle, centre $(10,5)$ and of radius $6 \quad$ MW3

(iii)

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education

Mathematics

Assessment Unit M1
assessing
Module M1: Mechanics 1
[AMM11]
TUESDAY 13 JANUARY, MORNING

MARK
 SCHEME

GCE Advanced/Advanced Subsidiary (AS) Mathematics

Mark Schemes

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters \mathbf{M}, \mathbf{W} and $\mathbf{M W}$ as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
W indicates marks for working.
MW indicates marks for combined method and working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

P	$=8 \cos 30^{\circ}$	M1W1
	$=6.93 \mathrm{~N}$	MW1
Q	$+8 \sin 30^{\circ}=5$	M1W1
Q	$=1 \mathrm{~N}$	W 1

2

3
(i) $I=m v-m u \quad$ M1
$=0.2 \times-6-0.2 \times 8$ M2

$$
=-2.8 \mathrm{Ns} \quad \mathrm{~W} 1
$$

$$
\begin{aligned}
-2.8 & =F \times 0.01 \\
F & =280 \mathrm{~N}(\text { upwards })
\end{aligned}
$$

4 (i)

(ii) along plane $\mathrm{Fr}=m \mathrm{~g} \sin \theta$
\square to plane $R=m \mathrm{~g} \cos \theta$

$$
F r=\mu R
$$

M1

$$
F r=\mu m \mathrm{~g} \cos \theta
$$

$\mu m \mathrm{~g} \cos \theta=m \mathrm{~g} \sin \theta$

$$
\mu=\frac{3}{4}
$$

(i) $S=t^{3}-6 t^{2}+9 t$
$v=3 t^{2}-12 t+9$
(ii) $a=6 t-12$
(iii) for $\max / \min a=0$

$$
\begin{aligned}
& 6 t-12=0 \\
& t=2 \mathrm{~s} \\
& \frac{\mathrm{~d} a}{\mathrm{~d} t}=6+\mathrm{ive}: \mathrm{min}
\end{aligned}
$$

.

6 (i)

(iii) total distance travelled $=$ area under graph

1090	$=\frac{1}{2}(20+30) \times 4+30 T+\frac{1}{2}(40-(T+4)) \times 30$	M1W4
1090	$=100+30 T+540-15 T$	
1090	$=640+15 T$	W1
T	$=30 \mathrm{~s}$	

7 (i)

(ii) $\mathfrak{\imath}=130 \mathrm{~g}$
$F r=\mu R$
$F r=65 \mathrm{~g}$
$\leftrightarrow \quad S=F r=65 \mathrm{~g}$
$\underset{\sim}{\mathrm{B}} 6 S \sin 60^{\circ}=3 \times 30 \mathrm{~g} \cos 60^{\circ}+x 100 \mathrm{~g} \cos 60^{\circ}$
$\therefore 6 \times 65 \mathrm{~g} \sin 60^{\circ}=90 \mathrm{~g} \cos 60^{\circ}+x 100 \mathrm{~g} \cos 60^{\circ}$

$$
x=5.85 \mathrm{~m}
$$

8 (i)

$\begin{array}{rlr}F & =m a & \text { M1 } \\ 6 \mathrm{~g}-T & =6 a & \text { W1 }\end{array}$
$T-4 \mathrm{~g}=4 a \quad \mathrm{~W} 1$
$2 \mathrm{~g}=10 a$
$1.96 \mathrm{~m} \mathrm{~s}^{-2}=a$
(ii) $u=0$
$s=2$
$v^{2}=u^{2}+2 a s$
$a=1.96$
$v=$?
$v^{2}=2 \times 1.96 \times 2$
$v=2.80 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) $u=0$

$$
\begin{array}{ll}
s=2 & s=u t+\frac{1}{2} a t^{2} \\
a=1.96 & 2=\frac{1}{2} \times 1.96 \times t^{2}
\end{array}
$$

$$
t=? \quad t=1.43 \mathrm{~s}
$$

(iv) $v=0 \quad v=u+a t \quad$ M1M1

$$
u=2.80 \quad 0=2.80-9.8 t
$$

$t=$?
\therefore becomes taut when

$$
t=1.42+2 \times 0.289
$$

$=2.00 \mathrm{~s}$ W1

Alternative solution:
4 kg mass now moves under gravity

$$
s=0 \quad s=u t+\frac{1}{2} a t^{2} \quad \mathrm{M} 2
$$

$u=2.8$

$a=-9.8 \quad 0=2.8 t+\frac{1}{2}(-9.8) t^{2}$
W1

$t=$

$$
\begin{aligned}
& 0=2.8 t-4.9 t^{2} \\
& 0=t(2.8-4.9 t) \\
& t=0 \text { or } t=\frac{4}{7}
\end{aligned}
$$

So $t=\frac{4}{7}$
time to become taut
$1.43+\frac{4}{7}=2.005$

ADVANCED SUBSIDIARY (AS)
General Certificate of Education January 2009

Mathematics

Assessment Unit S1
assessing
Module S1: Statistics 1

[AMS11]

MONDAY 19 JANUARY, AFTERNOON

MARK
 SCHEME

GCE Advanced/Advanced Subsidiary (AS) Mathematics

Mark Schemes

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{W} and $\mathbf{M W}$ as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method
W indicates marks for correct working.
MW indicates marks for combined method and working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidates's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

1
(i) $0.12+0.21+0.2+0.16+0.14+k=1$

$$
k=0.17
$$

(ii) $\mathrm{P}(2<X \leqslant 5)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)$

$$
\begin{aligned}
& =0.2+0.16+0.14 \\
& =0.5
\end{aligned}
$$

(iii) $\mathrm{E}(X)=(1 \times 0.12)+(2 \times 0.21)+(3 \times 0.2)+(4 \times 0.16)$

$$
+(5 \times 0.14)+(6 \times 0.17)
$$

$$
=3.5 \quad \mathrm{~W} 1
$$

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right)= & \left(1^{2} \times 0.12\right)+\left(2^{2} \times 0.21\right)+\left(3^{2} \times 0.2\right)+\left(4^{2} \times 0.16\right) \\
& +\left(5^{2} \times 0.14\right)+\left(6^{2} \times 0.17\right)
\end{aligned}
$$

$$
=14.94
$$

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}
$$

$$
=14.94-3.5^{2}
$$

$$
=2.69
$$

2 (i) Let X be r.v. "No. of hits in one-minute period"

$$
\begin{aligned}
& X \sim \operatorname{Po}(2.6) \\
& \mathrm{P}(X=4)=\frac{\mathrm{e}^{-2.6} \times 2.6^{4}}{4!}=0.141(3 \text { s.f. })
\end{aligned}
$$

(ii) Let Y be r.v. "No. of hits in two-minute period" $Y \sim \operatorname{Po}(5.2)$

$$
\mathrm{P}(X=4)=\frac{\mathrm{e}^{-5.2} \times 5.2^{4}}{4!}=0.168(3 \text { s.f. })
$$

(iii) $X \sim \operatorname{Po}(2.6)$

$$
\begin{aligned}
\mathrm{P}(X \geqslant 2) & =1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)] \\
& =1-\left[\mathrm{e}^{-2.6}\left(2.6^{0}+2.6^{1}\right)\right] \\
& =1-3.6 \mathrm{e}^{-2.6} \\
& =0.732615=0.733(3 \text { s.f. })
\end{aligned}
$$

3 Let X be r.v. "No of correct answers"
(i) $\quad X \sim \operatorname{Bin}(10,0.2)$

$$
\begin{aligned}
\mathrm{P}(X=4) & =\binom{10}{4}(0.2)^{4}(0.8)^{6} \\
& =0.0881 \text { (3 s.f.) }
\end{aligned}
$$

(ii) $\mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)$

$$
\begin{array}{ll}
=1-\binom{10}{0}(0.2)^{0}(0.8)^{10} & \text { MW1 } \\
=1-0.107 & \\
=0.893 \text { (3 s.f.) } & \text { W1 }
\end{array}
$$

(iii) 2 answers: $\mathrm{E}(X)=n p=10 \times 0.2=2$

4
(i) (a) $15,25,35,45$ MW1
(b) $14.5,24.5,34.5,45$
(c) $15,25,35,45.5$ (3 s.f.)

MW1MW1
(ii) for (b) mean $=25.5, \mathrm{SD}=7$ MW2
for (\mathbf{c}) mean $=26, \quad \mathrm{SD}=7$ MW1

5 Let X be r.v. "time, in minutes, spent at Cyber Zone" $X \sim \mathrm{~N}\left(72,15^{2}\right)$
(i) $\mathrm{P}(X<60)=\mathrm{P}\left(Z<\frac{60-72}{15}\right)$

$$
=\mathrm{P}(Z<-0.8) \quad \mathrm{W} 1
$$

$=1-\Phi(0.8)$
$=1-0.7881 \quad \mathrm{~W} 1$

$$
=0.2119=0.212 \text { (3 s.f.) }
$$

(ii) $\mathrm{P}(60<x<90)=\left(\frac{60-72}{15}<Z<\frac{90-72}{15}\right)$

$$
\begin{array}{lr}
=\mathrm{P}(-0.8<Z<1.2) & \mathrm{W} 1 \\
=\Phi(1.2)-\Phi(-0.8) & \mathrm{M} 1 \\
=\Phi(1.2)-(1-\Phi(0.8)) & \\
=0.8849-0.2119 & \mathrm{~W} 1
\end{array}
$$

$$
=0.673(3 \text { s.f. }) \quad \text { W1 }
$$

(iii) $\mathrm{P}(X>90)=1-0.8849=0.1151$

$\mathrm{E}(X)$	$=1.5 \times 0.2119+2.5 \times 0.673+3.5 \times 0.1151$		M1
	$=2.4032$		W1

[^0]6 (i) $\mathrm{P}(2 \leqslant X \leqslant 3)=\int_{2}^{3} \frac{3}{125} x^{2} \mathrm{~d} x$
M1

$$
\begin{aligned}
& =\left[\frac{x^{3}}{125}\right]_{2}^{3} \\
& =\frac{27-8}{125}=\frac{19}{125}
\end{aligned}
$$

(ii) $\mathrm{E}(X)=\int_{0}^{5} x \frac{3}{125} x^{2} \mathrm{~d} x=\int_{0}^{5} \frac{3 x^{3}}{125} \mathrm{~d} x$

$$
\begin{aligned}
& =\left[\frac{3 x^{4}}{500}\right]_{0}^{5} \\
& =\left(\frac{3 \times 625}{500}\right)=\frac{15}{4}=3 \frac{3}{4}
\end{aligned}
$$

(iii) $\mathrm{E}\left(X^{2}\right)=\int_{0}^{5} x^{2} \frac{3}{125} x^{2} \mathrm{~d} x=\int_{0}^{5} \frac{3 x^{4}}{125} \mathrm{~d} x$

$$
=\left[\frac{3 x^{5}}{625}\right]=\frac{3 \times 5^{5}}{5^{4}}=15
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\
& =15-3.75^{2}=0.9375=0.938(3 \text { s.f. })
\end{aligned}
$$

$7 \quad$ (i) $\quad(1-p) \times 1.1 p$
(ii) $\quad 1.1 p-1.1 p^{2}=0.176$

$$
1.1 p^{2}-1.1 p+0.176=0
$$

$$
\begin{array}{r}
p^{2}-p+0.16=0 \\
(p-0.2)(p-0.8)=0
\end{array}
$$

$$
p=0.2 \quad \text { or } 0.8
$$

but $p<0.5$ so $\quad p=0.2$
(iii) P (passes at 3 rd attempt)

$$
\begin{aligned}
& =(1-0.2) \times(1-1.1 \times 0.2) \times(1.1 \times 1.1 \times 0.2) \quad \text { M1MW4 } \\
& =0.151008 \\
& =0.151(3 \text { s.f. })
\end{aligned}
$$

[^0]: $\mathrm{E}(X)=£ 2.40$ (to nearest penny)

