Rewarding Learning

ADVANCED
General Certificate of Education
January 2009

Mathematics

Assessment Unit C4
 assessing
 Module C4: Core Mathematics 4

[AMC41]

WEDNESDAY 21 JANUARY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided. Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Find the angle between the two lines whose vector equations are

$$
\begin{align*}
& \mathbf{r}_{1}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}) \text { and } \\
& \mathbf{r}_{2}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\mu(\mathbf{i}-\mathbf{j}+2 \mathbf{k}) \tag{8}
\end{align*}
$$

2 A curve is defined by the parametric equations

$$
x=2 t \quad y=t^{3}-3 t
$$

Find in terms of t
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

3 A body is moving so that the rate of change of its distance from a fixed point A is inversely proportional to its distance x from A at any time t.
This can be modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{k}{x}
$$

where k is a constant.
Given that $x=100 \mathrm{~m}$ when $t=0$ seconds and
that $x=50 \mathrm{~m}$ when $t=5$ seconds,
find the total time the body takes to reach A.

4 (i) Sketch the graph of $y=\cos x$ where $0 \leqslant x \leqslant \pi$
(ii) Hence sketch the graph of $y=\cos ^{-1} x$ where $0 \leqslant y \leqslant \pi$

5 (i) Write $\frac{3 x+4}{x(x+1)}$ in partial fractions.
(ii) Hence find the exact area bounded by the curve $y=\frac{3 x+4}{x(x+1)}$, the x-axis and the lines $x=2$ and $x=3$ [The curve does not cross the x-axis between 2 and 3]

6 The functions f and g are defined by:

$$
\begin{array}{lll}
\mathrm{f}: x \rightarrow 2 x+5 & x \in \mathbb{R} & x \geqslant 0 \\
\mathrm{~g}: x \rightarrow|x| & x \in \mathbb{R} & x>-1
\end{array}
$$

(i) State the range of f .
(ii) Find the composite function fg , stating its domain.
(iii) Find the inverse function f^{-1}, stating its domain and range.

7 (i) Prove the identity

$$
\begin{equation*}
\sin 3 A \equiv 3 \sin A-4 \sin ^{3} A \tag{7}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\begin{equation*}
\sin A+\sin 3 A=0 \tag{8}
\end{equation*}
$$

where $0^{\circ} \leqslant A \leqslant 360^{\circ}$

8 Find

$$
\begin{equation*}
\int x \operatorname{cosec}^{2} x \mathrm{~d} x \tag{7}
\end{equation*}
$$

